Abstract:Dielectric elastomer (DE) is a typical viscoelastic soft material, is capable of giant deformation under an electric field and has broad temperature applications. Temperature can significantly affect the performance of DE. However, few reports focused on the effect of temperature on the electromechanical deformation. In the current study, first, the in-plane deformation of most widely used DE (VHB 4910, 3M) under different temperatures was performed experimentally. The results show that the deformation of the viscoelastic DE increases with the increasing temperature and DE easily occurs electromechanical instability at a high temperature. Subsequently, based on the thermodynamics, we present a viscoelastic model to describe the electromechanical deformation of DE under different temperatures. The numerical results show that DE creeps with time due to the viscoelasticity and has bigger deformation at higher temperature until suffering electromechanical instability, which show well consistent with the experimental results.