聚合物, Case II扩散, 溶胀变形, 本构方程, 耦合分析," />  聚合物, Case II扩散, 溶胀变形, 本构方程, 耦合分析,"/> 聚合物中Case II扩散与材料溶胀变形的耦合行为分析
2025年06月01日 星期日 首页   |   期刊介绍   |   编 委 会   |   投稿指南   |   期刊订阅   |   弘扬科学家精神专题   |   联系我们   |   English
  2024, Vol. 45 Issue (4): 496-507    DOI: 10.19636/j.cnki.cjsm42-1250/o3.2024.013
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
聚合物中Case II扩散与材料溶胀变形的耦合行为分析
罗焱1, 李能1, 李旭1, 刘齐民2
1. 武汉理工大学理学院,新材料理论与应用湖北省重点实验室
2. 武汉理工大学土木工程与建筑学院,道路桥梁与结构工程湖北省重点实验室
Modeling and Analysis on Case II Diffusion Coupled with Swelling Deformation Behavior in Polymers
全文: PDF (0 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 立足于连续介质力学理论,建立了一套描述聚合物中Case II扩散与材料溶胀变形耦合行为的理论模型,其控制方程包括力-化学平衡状态方程、溶剂扩散方程和分子数守恒方程,以及反映聚合物力学行为时间依赖性的粘-超弹本构方程。将该理论方法用于分析两种材料体系的瞬态自由溶胀过程,探讨无约束情况下柱状和板状聚合物试样中发生单向Case II扩散的行为特征。结合适当的边界条件和初始条件,直接求解单向扩散的浓度场和应力/变形场函数,并将其分布、演变规律与实测结果进行对比,较充分验证了本文建立的聚合物溶胀耦合分析框架的有效性和适应性。这些结果丰富了Case II扩散相关的表征理论,可望为后续的薄膜设计、药物输送等实际应用场景提供重要支撑。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
罗焱 李能 李旭 刘齐民
关键词 font-family: "Times New Roman","serif"mso-fareast-font-family: 黑体mso-ansi-language: EN-USmso-fareast-language: ZH-CN mso-bidi-language: AR-SA"> font-family: 宋体mso-ansi-language: EN-USmso-fareast-language: ZH-CNmso-bidi-language: AR-SAmso-ascii-font-family: "Times New Roman"mso-hansi-font-family: "Times New Roman"聚合物')" href="#">mso-bidi-font-family: "Times New Roman"">聚合物 font-family: "Times New Roman","serif"mso-fareast-font-family: 宋体mso-ansi-language: EN-USmso-fareast-language: ZH-CNCase IImso-bidi-language: AR-SA">Case IIfont-family: 宋体mso-ansi-language: EN-USmso-fareast-language: ZH-CNmso-bidi-language: AR-SAmso-ascii-font-family: "Times New Roman"mso-hansi-font-family: "Times New Roman"扩散')" href="#">mso-bidi-font-family: "Times New Roman"">扩散 溶胀变形 本构方程 耦合分析    
Abstract:For some polymers at temperatures near or below their glass transition temperature, one particular instance of non-Fickian solvent diffusion is usually observed, which is called Case II diffusion. In order to describe the coupling effect of Case II diffusion and swelling deformation in polymers, a set of theoretical models are established based on the continuum mechanics framework. Here, the governing equations for solvent penetration into polymer are derived and then specialized in reference configuration, including the mechanical-chemical equilibrium state equation, the concentration-dependent diffusion equation, and the molecular number conservation equation. Besides, the visco-hyperelastic constitutive equation taking into account the time-dependent deformation characteristics of material is integrated, which can reflect the competition mechanism between relaxation rate of polymeric network and migration of solvent in case II diffusion. This modeling approach is used to analyze the transient free swelling process for two material systems, so as to investigate the behavior of unidirectional Case II diffusion in columnar and tabular polymer specimens without constraint. According to those appropriate boundary conditions and initial conditions, the concentration, stress and deformation field variables during the unidirectional diffusion are directly obtained. The distribution and evolution of these calculation results are compared with the experimental observations, which moderately verifies the effectiveness and adaptability of the proposed coupling analysis method concerning with polymer swelling. The theory developed in this article may provide important guidance for practical applications (such as membranes designing or drug-delivery systems), in which Case II diffusion can commonly occur. It is also helpful to enhance understanding on combination of different polymer-solvent diffusion, from Fickian to non-Fickian circumstances.
Key wordspolymer    case II diffusion    swelling deformation    constitutive model    coupling effect
收稿日期: 2024-01-04      出版日期: 2024-07-02
基金资助:国家自然科学基金项目
通讯作者: 李旭     E-mail: rasier@whut.edu.cn
引用本文:   
罗焱 李能 李旭 刘齐民. 聚合物中Case II扩散与材料溶胀变形的耦合行为分析[J]. , 2024, 45(4): 496-507.
链接本文:  
http://manu39.magtech.com.cn/Jwk_gtlxxb/CN/10.19636/j.cnki.cjsm42-1250/o3.2024.013     或     http://manu39.magtech.com.cn/Jwk_gtlxxb/CN/Y2024/V45/I4/496
版权所有 © 《》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn