2025年05月23日 星期五 首页   |   期刊介绍   |   编 委 会   |   投稿指南   |   期刊订阅   |   弘扬科学家精神专题   |   联系我们   |   English
  2024, Vol. 45 Issue (6): 776-794    
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
石墨烯对镁基复合材料抗压性能影响的分子动力学研究
华军,邢小茹,谢云龙,赵冬
西安建筑科技大学
Molecular Dynamics Study of the Effect of Graphene on the Compressive Properties of Magnesium Matrix Composites
全文: PDF (0 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 镁(Mg)作为轻质金属材料,因其塑性不足及高温下力学性能下降等缺点限制了其应用。石墨烯(Gr)因其比表面积大、强度高等优点可以作为一种理想增强材料与金属镁复合,从而提升材料的力学性能。本文采用分子动力学(MD)方法对石墨烯/镁(Gr/Mg)复合材料在不同压缩条件下的力学性能进行研究。结果表明,单晶Mg在不同晶向下压缩表现出强烈的各向异性特征。引入Gr使得Mg基体中难以启动的滑移系因晶粒细化作用而被激活,应力得到释放,孪生变形机制难以开启。位错和孪生等缺陷在Gr界面附近形核增殖,载荷有效传递至Gr,提升了复合材料塑性阶段的平均流动应力。此外,Mg基体对Gr的约束限制了Gr的褶皱和弯曲,使材料韧性增强,Gr/Mg复合材料沿Z轴[ 0 0 0 1 ]晶向压缩的应变达0.35时,Gr仍未断裂。Gr/Mg复合材料中位错运动到Gr表面无法继续贯穿,抑制了Mg基体的破坏。压缩荷载作用下,Gr/Mg复合材料中位错线的增加有助于抵抗压缩塑性变形。Gr/Mg复合材料的屈服应力、屈服应变及塑性变形阶段的平均流动应力随着Gr层数增加而增大,且Gr处于分离状态时,Gr/Mg复合材料的屈服应变更大。在10K~600K温度范围内,Gr/Mg复合材料的弹性模量和屈服应力随着温度升高而降低。而应变率对Gr/Mg复合材料的弹性模量和塑性变形阶段的平均流动应力影响不明显,但增大应变率可以提高复合材料的屈服应力和屈服应变。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
华军
邢小茹
谢云龙
赵冬
关键词 石墨烯镁基复合材料压缩力学性能分子动力学位错graphenemagnesium matrix compositescompressive mechanical propertiesmolecular dynamicsdislocation    
Abstract:Magnesium (Mg), a lightweight metal material, is constrained in its applications due to its poor plasticity and low strength at high temperatures. Graphene (Gr) has the characteristics of large specific surface area and high strength. It is an ideal reinforcement for improving the mechanical properties of materials. Molecular dynamics (MD) simulation was employed to investigate the mechanical behaviors of single-crystal magnesium (Mg) and graphene/magnesium (Gr/Mg) composites under compressive loading. Through the analysis of stress-strain curves, atomic structure diagrams, and dislocation distributions, the microscopic deformation mechanisms of single-crystal Mg and Gr/Mg composites under compressive loading were explored. Additionally, the influence of factors such as the number of Gr layers, loading strain rate, and temperature on the mechanical properties of the materials was studied. The results reveal that single-crystal Mg exhibits anisotropic characteristics under compressive loading. The addition of Gr enables the activation of difficult-to-initiate slip systems in the Mg matrix due to grain refinement. This leads to that stress is released, and the twinning deformation mechanism becomes difficult to initiate. Near the Gr interface, defects such as dislocations and twins nucleate and proliferate, effectively transferring the load to Gr, which elevates the average flow stress during the plastic deformation stage of the composites. Furthermore, the Mg matrix restricts the folding and bending of Gr, leading to an enhancement in material toughness. As a result, when the Gr/Mg composite is compressed along the [0 0 0 1] crystal direction to a strain of 0.35, the Gr remains intact without fracture. Dislocations in Gr/Mg composite materials cannot penetrate the Gr layer, which suppresses the damage of the Mg matrix. And the increase of dislocation lines can resist compressive plastic deformation. In composites with multiple layers of Gr, the yield stress, yield strain, and average flow stress during the plastic deformation stage increase with the increase in the number of Gr layers. Additionally, the yield strain is greater when the Gr layers are in a separated state compared to that in a stacked state. Within the temperature range of 10K-600K, the elastic modulus and yield stress of the Gr/Mg composite decrease with increasing temperature. However, the strain rate has an insignificant effect on the elastic modulus and average flow stress during the plastic deformation stage of the Gr/Mg composites. Nonetheless, increasing the strain rate can enhance the yield stress and yield strain of the composites.
收稿日期: 2024-03-07      出版日期: 2024-12-27
ZTFLH:  TB331  
基金资助:西安建筑科技大学校人才科技基金项目
通讯作者: 华军     E-mail: huajun211@sina.com
引用本文:   
华军 邢小茹 谢云龙 赵冬. 石墨烯对镁基复合材料抗压性能影响的分子动力学研究[J]. , 2024, 45(6): 776-794.
链接本文:  
http://manu39.magtech.com.cn/Jwk_gtlxxb/CN/     或     http://manu39.magtech.com.cn/Jwk_gtlxxb/CN/Y2024/V45/I6/776
版权所有 © 《》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn