2025年06月02日 星期一 首页   |   期刊介绍   |   编 委 会   |   投稿指南   |   期刊订阅   |   弘扬科学家精神专题   |   联系我们   |   English
  2024, Vol. 45 Issue (4): 427-440    DOI: 10.19636/j.cnki.cjsm42-1250/o3.2024.010
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
数据与连续损伤力学双驱动的增材疲劳寿命预测模型
王谙斌1, 甘磊2, 淦志强1, 范志明1, 苏永辉1, 吴昊1
1. 同济大学航空航天与力学学院
2. 哈尔滨工业大学(深圳)理学院
Data-Driven and Continuum Damage Mechanics-based Approach for Predicting Fatigue Life in Additive Manufacturing
全文: PDF (0 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 传统的力学模型与新兴的数据驱动模型都已广泛用于预测增材材料的疲劳寿命。然而,以连续损伤力学(Continuum Damage Mechanics,CDM)代表的传统模型存在着精度低、适用范围有限等问题,而以神经网络(Artificial Neural Network, ANN)为代表的数据驱动模型则无法应用小样本工况。为解决上述问题,融合物理知识和数据信息的知识-数据双驱动模型在近年来受到了广泛关注。为比较分析上述各类模型的预测能力,本文以激光粉末床熔融成型(Laser Powder Bed Fusion, LPBF)的 AlSi10Mg合金为研究对象,首先构建了可自动标定的CDM模型,并将其与基于ANN的数据驱动模型在各种工况下进行了比较研究。进一步通过特征融合、参数融合和输出融合方法,构建了三类以CDM模型与ANN模型为基础的知识-数据双驱动模型,并量化分析了它们在预测精度和数据需求等方面的性能。研究结果表明:基于参数融合的模型,训练数据修正作用较为显著,在预测精度方面受CDM模型影响最小,在CDM模型拟合结果较差时也能保证一定精度;基于特征融合的模型能最大化利用CDM模型中的信息,在数据充足时具有最高的预测精度;基于输出融合的模型以CDM模型的结果为主导,利用ANN进行修正,具有最好的非训练域(外推)预测性能。这些结果对于进一步发展知识-数据双驱动的高精增材疲劳寿命预测模型具有参考价值。.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
王谙斌 甘磊 淦志强 范志明 苏永辉 吴昊
关键词 增材制造疲劳寿命连续损伤力学神经网络知识-数据双驱动    
Abstract:Traditional mechanics models and emerging data-driven models have been widely used to predict the fatigue life of additive materials. However, traditional models represented by Continuum Damage Mechanics (CDM) suffer from low accuracy and limited applicability, while data-driven models represented by Artificial Neural Networks (ANN) cannot be applied to small-sample operating conditions. To address these issues, the knowledge-data dual-driven models that integrate physical knowledge and data information have received extensive attention in recent years. To compare and analyze the predictive capabilities of these models, this study takes the AlSi10Mg alloy in Laser Powder Bed Fusion (LPBF) as the research object. Initially, an automatically calibrated CDM model is constructed and compared with the ANN-based data-driven model under various working conditions. Furthermore, three types of knowledge-data dual-driven models based on CDM and ANN are constructed using feature fusion, parameter fusion, and output fusion methods. The performance of these models is quantitatively analyzed in terms of predictive accuracy and data requirements. The research results indicate that the parameter fusion-based model exhibits a significant effect in correcting the training data and shows minimal sensitivity to the CDM model in terms of predictive accuracy, even when the CDM model fitting results are poor. The feature fusion-based model maximizes the utilization of information from the CDM model and achieves the highest predictive accuracy when data is abundant. The output fusion-based model, which is primarily based on the results of the CDM model and corrected using ANN, demonstrates the best extrapolation performance in non-training domains. These findings provide valuable references for further developing knowledge-data dual-driven models for high-precision fatigue life prediction in additive manufacturing.
收稿日期: 2023-12-11      出版日期: 2024-07-02
基金资助:基于符号回归算法的多轴疲劳寿命预测方法研究;增材制造材料多轴疲劳损伤分析及实验测试
通讯作者: 吴昊     E-mail: wuhao@tongji.edu.cn
引用本文:   
王谙斌 甘磊 淦志强 范志明 苏永辉 吴昊. 数据与连续损伤力学双驱动的增材疲劳寿命预测模型[J]. , 2024, 45(4): 427-440.
链接本文:  
http://manu39.magtech.com.cn/Jwk_gtlxxb/CN/10.19636/j.cnki.cjsm42-1250/o3.2024.010     或     http://manu39.magtech.com.cn/Jwk_gtlxxb/CN/Y2024/V45/I4/427
版权所有 © 《》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn