2025年05月14日 星期三 首页   |   期刊介绍   |   编 委 会   |   投稿指南   |   期刊订阅   |   弘扬科学家精神专题   |   联系我们   |   English
  2021, Vol. 42 Issue (4): 490-500    DOI: 10.19636/j.cnki.cjsm42-1250/o3.2021.006
  研究简报 本期目录 | 过刊浏览 | 高级检索 |
含界面相Voronoi单元的等效弹性常数的计算
王挺1,2,张蕊1,2,郭然1,2
1. 昆明理工大学
2. 昆明理工大学
Calculation of equivalent elastic constants of Voronoi element with interface phase
全文: PDF (0 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要  采用含界面相Voronoi单元有限元法,根据广义胡克定律,计算了在给定边界条件下,颗粒增强复合材料的等效弹性常数。建立了含多个随机分布的椭圆形夹杂及界面相的VCFEM模型,分析了夹杂体分比,界面相厚度和界面相弹性模量等因素对颗粒增强复合材料等效弹性常数的影响,并利用普通有限元方法对比验证。结果表明,当界面相弹性模量小于基体与夹杂时,材料的等效弹性模量会随着界面相厚度的增大而减小,随着夹杂体分比的增大而减小,并且界面过薄时,材料的等效弹性模量会随着夹杂体分比的增大而增大;当界面相弹性模量大于基体或夹杂时,材料的等效弹性模量会随着夹杂体分比和界面相厚度的增大而增大。而界面相的厚度和弹性模量对材料的等效泊松比的影响较小,材料的等效泊松比主要受夹杂体分比的影响,与其呈反比关系。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
王挺
张蕊
郭然
关键词 界面相,Voronoi单元,颗粒增强复合材料,广义胡克定律,等效弹性常数interface phase, Voronoi element, particle reinforced composites, generalized Hooke's law, equivalent elastic constant    
Abstract:The equivalent elastic constant is one of the important indicators to characterize the mechanical properties of materials. To study the influence of the interface on the overall mechanical properties of the particle-reinforced composites, the Voronoi element finite element method containing the interface phase is used in this paper. According to the generalized Hooke’s law, we calculated the equivalent elastic constant of particle-reinforced composites under certain boundary conditions. In order to ensure the validity of the results, the VCFEM model and the ordinary finite element model containing multiple randomly distributed elliptical inclusions and interfacial phases were established. Then, the impact of several factors on the equivalent elastic constant of particle reinforced composites,including the ratio of inclusions, the thickness of the interfacial phase and the elastic modulus of the interfacial phase were analyzed. It is found that the thickness and elastic modulus of the interface phase have a greater influence on the equivalent elastic modulus of the material,but have a smaller influence on the equivalent Poisson's ratio. Meanwhile, the results show that, when the elastic modulus of the interface phase is smaller than that of the matrix and inclusions, the equivalent elastic modulus of the material will be inversely proportional to the thickness of the interface phase and inversely proportional to the proportion of the inclusions.Furthermore, if the interface is too thin, the equivalent of the material The elastic modulus is proportional to the ratio of inclusions; When the elastic modulus of the interface phase is greater than that of the matrix or inclusions, the equivalent elastic modulus of the material is proportional to the ratio of the inclusions and the thickness of the interface phase.
收稿日期: 2020-10-06      出版日期: 2021-08-27
通讯作者: 王挺     E-mail: 1132170967@qq.com
引用本文:   
王挺 张蕊 郭然. 含界面相Voronoi单元的等效弹性常数的计算[J]. , 2021, 42(4): 490-500.
链接本文:  
http://manu39.magtech.com.cn/Jwk_gtlxxb/CN/10.19636/j.cnki.cjsm42-1250/o3.2021.006     或     http://manu39.magtech.com.cn/Jwk_gtlxxb/CN/Y2021/V42/I4/490
版权所有 © 《》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn