2025年06月16日 星期一 首页   |   期刊介绍   |   编 委 会   |   投稿指南   |   期刊订阅   |   弘扬科学家精神专题   |   联系我们   |   English
  2014, Vol. 35 Issue (4): 384-390    
  简报 本期目录 | 过刊浏览 | 高级检索 |
复合材料厚梁精化锯齿理论及有限元分析
任晓辉,陈万吉,吴振
沈阳航空航天大学
Refined zig-zag theory for thick composite beams and finite element analysis
全文: PDF (754 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 由于具有预先满足层间应力连续的优点,锯齿理论被广泛研究和应用。然而,至今锯齿理论仍然存在如下难题:基于锯齿理论构造单元时,需使用满足单元间C1连续的插值函数,难于构造多节点高阶单元,而且精度较低。如果这些问题不被重视和解决,应用此类理论分析复合材料力学问题可能得出不恰当的结论。通过发展高精度的考虑横法向应变的C0型锯齿理论,本文将克服已有锯齿理论遇到的上述难题。基于发展的锯齿理论,构造三节点梁单元验证发展理论模型的性能。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
任晓辉
陈万吉
吴振
关键词 C0型锯齿理论三节点梁单元横法向应变层合梁横向位移导数    
Abstract:Zig-zag theory is widely studied and used as continuity conditions of transverse shear stresses are a priori satisfied. However, some problems will be involved in the zig-zag theory. The C1 shape functions have to be required during its finite element implementation, so that it is difficult to construct higher-order element based on the zig-zag theory. Moreover, previous zig-zag theories are less accurate in comparison with three-dimensional elasticity solutions. If these problems are neglected, some improper conclusions might be drawn as these zig-zag theories are used to analyze the mechanical problems of laminated composites. By proposing an accurate C0-type zig-zag theory considering transverse normal strain, difficulties encountered by previous zig-zag theories will be overcome in this paper. Based on the proposed zig-zag theory, a three-node beam element is constructed to verify the performance of the proposed model.
Key wordsC0-type zig-zag theory    three-node beam element    transverse normal strain    laminated beam    derivatives of transverse displacement
收稿日期: 2013-11-29     
:  O343.8  
通讯作者: 吴振   
引用本文:   
任晓辉;陈万吉;吴振. 复合材料厚梁精化锯齿理论及有限元分析[J]. , 2014, 35(4): 384-390.
链接本文:  
http://manu39.magtech.com.cn/Jwk_gtlxxb/CN/     或     http://manu39.magtech.com.cn/Jwk_gtlxxb/CN/Y2014/V35/I4/384
版权所有 © 《》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn