Abstract Strength criterion is an important component in explosive failure mechanics, and is also the basis of appraising the supporting capacity of explosive parts. Two types of polymer bonded explosives (PBXs), HMX-based PBX and TATB-based PBX, are employed. An end-bounded cylinder collapse method, based on uniaxial loading technique, is proposed to test strength failure under complex stress states. The stress field is presented according to finite element simulation, and the adaptability of criterions in PBXs’ strength analysis is illustrated based on principal stresses of initial failure position at last. Among these four criterions, Mohr-Coulomb criterion has the best precision with a error less than 15%, Twin-shear criterion and Drucker-Prager criterion take second place, Uniaxial-strength criterion is relatively poor. On the other hand, Uniaxial-strength criterion has the best safety threshold with a margin more than 75%, Mohr-Coulomb criterion, Twin-shear criterion and Drucker-Prager criterion follow. In a word, Mohr-Coulomb criterion can predict the apparent strength upper limit of HMX-based PBX and the lower limit of TATB-based PBX, whose upper limit can be predicted by Twin-shear criterion.
|
Received: 15 November 2012
|
|
|
|
|