|
|
THERMAL BENDING ANALYSIS OF SIMPLY SUPPORTED THIN PLATE BY THE HYBRID BOUNDARY NODE METHOD |
|
|
Abstract Thermal bending problem of thin plate is analyzed by the hybrid boundary node method in this paper. The boundary local integral equation of isotropic thin plate is established based on thermal elastic theory and modified variational principle of thin plate. The domain variables are interpolated by fundamental solution, while the boundary variables are approximated by moving least squares. Only discrete nodes are constructed on the boundary, and no meshes are needed either for the purpose of interpolation of the solution variables, or for the numerical integration, so the present method is a truly boundary type meshless method. The numerical examples show that this approach has such advantages as high efficiency, good accuracy and high convergence rate.
|
Received: 17 August 2011
|
|
|
|
|
[1] |
. Time-delayed feedback control of the chaotic motion of the thin plate in subsonic air flow[J]. , 2013, 34(5): 521-526. |
[2] |
. PLASTIC DYNAMIC BUCKLING OF RECTANGULAR THIN PLATES SUBJECT TO IN-PLANE STEP LOAD[J]. , 2013, 34(5): 459-465. |
[3] |
. MAGNETO-ELASTIC COUPLED DYNAMICS THEORETICAL MODEL OF AXIALLY MOVING CURRENT-CONDUCTING THIN PLATE[J]. , 2013, 34(4): 417-425. |
[4] |
. A Meshfree Support Integration Method[J]. , 2012, 33(1): 0-7. |
[5] |
. Application of meshless natural element method to dynamic elastoplastic analysis[J]. , 2011, 32(5): 493-499. |
[6] |
. Multivariable Wavelet Finite Element Method for Analysis of Thin Plate[J]. , 2011, 32(2): 210-216. |
|
|
|
|