|
|
Cite this article: |
|
WEN JingChong,
SHI YongXiang,
NING JieYuan
.2021.Measurement of high-speed rail surface-wave phase-velocity dispersion.Chinese Journal of Geophysics (in Chinese),64(9): 3246-3256,doi: 10.6038/cjg2021P0252
|
|
|
Measurement of high-speed rail surface-wave phase-velocity dispersion |
WEN JingChong1, SHI YongXiang1, NING JieYuan1,2 |
1. School of Earth and Space Sciences, Peking University, Beijing 100871, China; 2. Hebei Hongshan Geophysical National Observation and Research Station, Hebei Xingtai 054000, China |
|
|
Abstract In order to make full use of the surface wave information in high-speed rail seismic signals, this paper applies the two-station method and the rotation method to the high-speed rail seismic simulation results, trying to obtain dispersion curves of the fundamental-mode Rayleigh and Love waves. By analyzing the interference characteristics of the wave field generated by the piers of the high-speed rail with viaduct, we propose a surface-wave phase velocity correction method suitable for the high-speed rail seismic wave field. Numerical tests show the effectiveness of the method.
|
Received: 19 April 2021
|
|
|
|
|
Bao T Z, Ning J Y, Zhang X B. 2019. Extraction of characteristics of wavefield under viaduct produced by high-speed rail. Acta Scientiarum Naturalium Universitatis Pekinensis (in Chinese), 55(5):839-849. Barmin M P, Ritzwoller M H, Levshin A L. 2001. A fast and reliable method for surface wave tomography. Pure and Applied Geophysics, 158(8):1351-1375. Brenguier F, Boué P, Ben-Zion Y, et al. 2019. Train traffic as a powerful noise source for monitoring active faults with seismic interferometry. Geophysical Research Letters, 46(16):9529-9536, doi:10.1029/2019GL083438. Campillo M, Paul A. 2003. Long-range correlations in the diffuse seismic coda. Science, 299(5606):547-549. Cao J, Chen J B. 2019. Solution of Green function from a moving line source and the radiation energy analysis:A simplified modeling of seismic signal induced by high-speed train. Chinese Journal of Geophysics (in Chinese), 62(6):2303-2312, doi:10.6038/cjg2019M0654. Chen J B, Cao J. 2020. Green's function for three-dimensional elastic wave equation with a moving point source on the free surface with applications. Geophysical Prospecting, 68(4):1281-1290. Forsyth D W, Webb S C, Dorman L M, et al. 1998. Phase velocities of Rayleigh waves in the MELT experiment on the East Pacific Rise. Science, 280(5367):1235-1238. Igel H, Schreiber U, Flaws A, et al. 2005. Rotational motions induced by the M8.1 Tokachi-Oki earthquake, September 25, 2003. Geophysical Research Letters, 32(8):L08309, doi:10.1029/2004GL022336. Jiang Y R, Bao T Z, Ning J Y, et al. 2019a. Spectral characteristics of high-speed rail seismic signal under viaduct. Acta Scientiarum Naturalium Universitatis Pekinensis (in Chinese), 55(5):829-838. Jiang Y R, Liang X, Ning J Y, et al. 2019b. 4D ground frequency map:concept and application. Acta Scientiarum Naturalium Universitatis Pekinensis (in Chinese), 55(5):850-858. Kurrle D, Igel H, Ferreira A M G, et al. 2010. Can we estimate local Love wave dispersion properties from collocated amplitude measurements of translations and rotations?. Geophysical Research Letters, 37(4):L04307, doi:10.1029/2009GL042215. Lin F C, Ritzwoller M H, Snieder R. 2009. Eikonal tomography:surface wave tomography by phase front tracking across a regional broad-band seismic array. Geophysical Journal International, 177(3):1091-1110. Lin F C, Ritzwoller M H. 2011. Helmholtz surface wave tomography for isotropic and azimuthally anisotropic structure. Geophysical Journal International, 186(3):1104-1120. Liu L, Jiang Y R. 2019. Attribution extraction and feature analysis for large amount of high-speed-train seismic events. Chinese Journal of Geophysics (in Chinese), 62(6):2313-2320, doi:10.6038/cjg2019M0682. Liu Y J, Yue Y B, Li Y M, et al. 2021. On the retrievability of seismic waves from high-speed-train-induced vibrations using seismic interferometry. IEEE Geoscience and Remote Sensing Letters, 1-5, doi:10.1109/LGRS.2021.3050205. Lv G J, Li H M, Kang J, et al. 2017. Analysis of geological drilling data in Hebei Province. Seismological and Geomagnetic Observation and Research (in Chinese), 38(2):125-131. Quiros D A, Brown L D, Kim D. 2016. Seismic interferometry of railroad induced ground motions:Body and surface wave imaging. Geophysical Journal International, 205(1):301-313. Sato Y. 1955. Analysis of dispersed surface waves by means of Fourier transform. Bulletin of the Seismological Society of America, 33:33-48. Takemiya H. 2008. Analyses of wave field from high-speed train on viaduct at shallow/deep soft grounds. Journal of Sound and Vibration, 310(3):631-649. Wang X K, Chen W C, Wen J C, et al. 2019a. The applications of synchrosqueezing time-frequency analysis in high-speed train induced seismic data processing. Chinese Journal of Geophysics (in Chinese), 62(6):2328-2335, doi:10.6038/cjg2019M0658. Wang X K, Wang B L, Chen W C, et al. 2019b. Using the data from one receiver to estimate running velocity of high-speed train. Acta Scientiarum Naturalium Universitatis Pekinensis (in Chinese), 55(5):798-804. Wang X K, Wang B L, Chen W C. 2021. The second-order synchrosqueezing continuous wavelet transform and its application in the high-speed-train induced seismic signal. IEEE Geoscience and Remote Sensing Letters, 18(6):1109-1113, doi:10.1109/LGRS.2020.2993596. Wen J C, Ning J Y. 2019. Inversion of effective source time function of the high-speed-rail wavefield. Acta Scientiarum Naturalium Universitatis Pekinensis (in Chinese), 55(5):823-828. Wen J C, Bao T Z, Feng Y G, et al. 2019a. PKU ROSE Array:A road seismological array deployed by Peking University. Acta Scientiarum Naturalium Universitatis Pekinensis (in Chinese), 55(5):791-797. Wen J C, Ning J Y, Zhang X B. 2019b. Theoretical analysis on the characteristics of seismic wave field produced by high-speed train. Acta Scientiarum Naturalium Universitatis Pekinensis (in Chinese), 55(5):813-822. Wu Y S, Yang Y B. 2004. A semi-analytical approach for analyzing ground vibrations caused by trains moving over elevated bridges. Soil Dynamics and Earthquake Engineering, 24(12):949-962. Zhang G L, He C J, Li Y, et al. 2019. Wavelet time function of high-speed-train seismic source and verification. Chinese Journal of Geophysics (in Chinese), 62(6):2344-2354, doi:10.6038/cjg2019M0661. Zhang H L, Wang B L, Ning J Y, et al. 2019. Interferometry imaging using high-speed-train induced seismic waves. Chinese Journal of Geophysics (in Chinese), 62(6):2321-2327, doi:10.6038/cjg2019M0676. 附中文参考文献 鲍铁钊, 宁杰远, 张献兵. 2019. 高架桥下方高铁地震波场的特征量提取. 北京大学学报(自然科学版), 55(5):838-848. 曹健, 陈景波. 2019. 移动线源的Green函数求解及辐射能量分析:高铁地震信号简化建模. 地球物理学报, 62(6):2303-2312, doi:10.6038/cjg2019M0654 蒋一然, 鲍铁钊, 宁杰远等. 2019a. 高架桥下方高铁地震信号频谱特征研究. 北京大学学报(自然科学版), 55(5):829-838. 蒋一然, 梁萱, 宁杰远等. 2019b. 高铁地震4D地频图及其可用性研究. 北京大学学报(自然科学版), 55(5):850-858. 刘磊, 蒋一然. 2019. 大量高铁地震事件的属性体提取与特性分析. 地 球物理学报, 62(6):2313-2320, doi:10.6038/cjg2019M0682. 吕国军, 李红梅, 康江等. 2017. 河北省地质钻孔资料分析. 地震地磁观测与研究, 38(2):125-131. 王晓凯, 陈文超, 温景充等. 2019a. 高铁震源地震信号的挤压时频分析应用. 地球物理学报, 62(6):2328-2335, doi:10.6038/cjg2019M0658. 王晓凯, 王保利, 陈文超等. 2019b. 利用单检波器数据估计高铁列车运行速度. 北京大学学报(自然科学版), 55(5):798-804. 温景充, 宁杰远. 2019. 高铁波场等效震源时间函数反演方法研究. 北京大学学报(自然科学版), 55(5):823-828. 温景充, 鲍铁钊, 冯永革等. 2019a. 北京大学道路地震学观测台阵设计及数据特点. 北京大学学报(自然科学版), 55(5):791-797. 温景充, 宁杰远, 张献兵. 2019b. 高铁地震波场特点的理论分析. 北京大学学报(自然科学版), 55(5):813-822 张固澜, 何承杰, 李勇等. 2019. 高铁地震震源子波时间函数及验证. 地球物理学报, 62(6):2344-2354, doi:10.6038/cjg2019M0661. 张唤兰, 王保利, 宁杰远等. 2019. 高铁地震数据干涉成像技术初探. 地球物理学报, 62(6):2321-2327, doi:10.6038/cjg2019M0676. |
[1] |
LUO Wei, WANG XuBen, WANG KunPeng, ZHANG Gang, LI DeWei, YANG YuHan. Study on the characteristics of magnetotelluric source effects and its correction[J]. Chinese Journal of Geophysics (in Chinese), 2021, 64(8): 2952-2964. |
[2] |
CAO WeiPing, HUANG XuRi, YAO Hai, HU YeZheng, XU YunGui, TANG Jing. Seismic interferometry for traffic noise recorded by a distributed acoustic sensing system[J]. Chinese Journal of Geophysics (in Chinese), 2021, 64(7): 2530-2539. |
[3] |
GAO TianYang, DING ZhiFeng, WANG XingChen, JIANG Lei. Joint inversion of receiver functions, Rayleigh wave dispersion and ZH ratio for crustal structure in Southeast Tibetan Plateau and its implications for dynamics[J]. Chinese Journal of Geophysics (in Chinese), 2021, 64(6): 1885-1906. |
|
|
|
|