|
|
Cite this article: |
|
YANG Shuai,
ZHENG Wei,
YIN WenJie,et al
.2021.Improve the accuracy of GRACE terrestrial water storage changes using GRACE data combined with a new scale factor correction method.Chinese Journal of Geophysics (in Chinese),64(9): 3068-3082,doi: 10.6038/cjg2021O0431
|
|
|
Improve the accuracy of GRACE terrestrial water storage changes using GRACE data combined with a new scale factor correction method |
YANG Shuai1,2, ZHENG Wei1,2,3, YIN WenJie2, LIU Jie1 |
1. School of Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo Henan 454003, China; 2. Qian Xuesen Laboratory of Space Technology, China Academy of Space Technology, Beijing 100094, China; 3. School of Geomatics, Liaoning Technical University, Fuxin Liaoning 123000, China |
|
|
Abstract The purpose of this study is to reduce leakage errors caused by GRACE signal processing. Firstly, a New Scaling Factor Correction Method (NSFCM) is developed by assigning weight to the mean square error and correlation calculated by the model and CSR-SHc. Secondly, the Yangtze River Basin is selected as the example to evaluate the performance of the NSFCM. Results indicate that the correction results using NSFCM, on the one hand, take the advantages of the spatial distribution trend of the scaling factor correction results calculated by the GLDAS (Global Land Data Assimilation System) model and WGHM (Water GAP Global Hydrology Model). On the other hand, it can avoid the uneven spatial distribution trend of the scale factor and iterative restoration method officially provided by CSR (Center for Space Research). In terms of the long-term trend, the NSFCM outperforms the scaling factor correction results calculated by the GLDAS and WGHM. With regard to the annual amplitude, the NSFCM results are significantly better than that of the iterative recovery method and CSR Mascon data. Thirdly, the NSFCM results show that the water storage of the Yangtze River Basin, upstream, and middle and lower reaches reveals an increasing trend at 0.29 cm·a-1, 0.14 cm·a-1 and 0.49 cm·a-1 from April 2002 to January 2017, respectively. Compared to the rising trends before correction, the uptrend increases by 38%, 100%, and 23%, respectively. Moreover, the rising trend of water storage is mainly concentrated in the middle and lower reaches of the Yangtze River Basin.
|
Received: 06 January 2020
|
|
|
|
|
Chen J L, Wilson C R, Tapley B D. 2006. Satellite gravity measurements confirm accelerated melting of greenland ice sheet. Science, 313(5795):1958-1960, doi:10.1126/science.1129007. Chen J L, Wilson C R, Tapley B D, et al. 2007. GRACE detects coseismic and postseismic deformation from the Sumatra-Andaman earthquake. Geophysical Research Letters, 34(13):L13302, doi:10.1029/2007gl030356. Chen J L, Wilson C R, Blankenship D, et al. 2009. Accelerated Antarctic ice loss from satellite gravity measurements. Nature Geoscience, 2(12):859-862, doi:10.1038/ngeo694. Chen J L, Li J, Zhang Z Z, et al. 2014. Long-term groundwater variations in Northwest India from satellite gravity measurements. Global and Planetary Change, 116:130-138, doi:10.1016/j.gloplacha.2014.02.007. Chen J L, Wilson C R, Li J, et al. 2015. Reducing leakage error in GRACE-observed long-term ice mass change:a case study in West Antarctica. Journal of Geodesy, 89(9):925-940, doi:10.1007/s00190-015-0824-2. Chen J L, Tapley B, Seo K W, et al. 2019. Improved quantification of global mean ocean mass change using GRACE satellite gravimetry measurements. Geophysical Research Letters, 46(23):13984-13991, doi:10.1029/2019gl085519. Chen X, Long D, Hong Y, et al. 2017. Improved modeling of snow and glacier melting by a progressive two-stage calibration strategy with GRACE and multisource data:How snow and glacier meltwater contributes to the runoff of the Upper Brahmaputra River basin?. Water Resources Research, 53(3):2431-2466, doi:10.1002/2016wr019656. Cheng M K, Ries J C, Tapley B D. 2011. Variations of the Earth's figure axis from satellite laser ranging and GRACE. Journal of Geophysical Research:Solid Earth, 116(B1):B01409, doi:10.1029/2010jb000850. Döll P, Müller Schmied H, Schuh C, et al. 2014. Global-scale assessment of groundwater depletion and related groundwater abstractions:Combining hydrological modeling with information from well observations and GRACE satellites. Water Resources Research, 50(7):5698-5720, doi:10.1002/2014WR015595. Feng W, Wang Q C, Mu P D, et al. 2017. Groundwater storage variations in the North China Plain from GRACE with spatial constraints. Chinese Journal of Geophysics (in Chinese), 60(5):1630-1642, doi:10.6038/cjg20170502. Geruo A, Wahr J, Zhong S J. 2012. Computations of the viscoelastic response of a 3-D compressible Earth to surface loading:an application to Glacial Isostatic Adjustment in Antarctica and Canada. Geophysical Journal International, 192(2):557-572, doi:10.1093/gji/ggs030. Han S C, Shum C K, Bevis M, et al. 2006. Crustal dilatation observed by GRACE after the 2004 sumatra-andaman earthquake. Science, 313(5787):658-662, doi:10.1126/science.1128661. Huang Z Y, Jiao J J, Luo X, et al. 2019. Sensitivity analysis of leakage correction of GRACE data in southwest China using a-priori model simulations:inter-comparison of spherical harmonics, mass concentration and in situ observations. Sensors, 19(14):3149, doi:10.3390/s19143149. Jekeli C. 1981 Alternative methods to smooth the Earth's gravity field. Columbus, USA:The Ohio State University. Jin S G, Zou F. 2015. Re-estimation of glacier mass loss in Greenland from GRACE with correction of land-ocean leakage effects. Global and Planetary Change, 135:170-178, doi:10.1016/j.gloplacha.2015.11.002. Landerer F W, Swenson S C. 2012. Accuracy of scaled GRACE terrestrial water storage estimates. Water Resources Research, 48(4):W04531, doi:10.1029/2011wr011453. Long D, Scanlon B R, Longuevergne L, et al. 2013. GRACE satellite monitoring of large depletion in water storage in response to the 2011 drought in Texas. Geophysical Research Letters, 40(13):3395-3401, doi:10.1002/grl.50655. Long D, Shen Y J, Sun A, et al. 2014. Drought and flood monitoring for a large karst plateau in Southwest China using extended GRACE data. Remote Sensing of Environment, 155:145-160, doi:10.1016/j.rse.2014.08.006. Long D, Yang Y T, Wada Y, et al. 2015a. Deriving scaling factors using a global hydrological model to restore GRACE total water storage changes for China's Yangtze River Basin. Remote Sensing of Environment, 168:177-193, doi:10.1016/j.rse.2015.07.003. Long D, Longuevergne L, Scanlon B R. 2015b. Global analysis of approaches for deriving total water storage changes from GRACE satellites. Water Resources Research, 51(4):2574-2594, doi:10.1002/2014wr016853. Mohajerani Y, Velicogna I, Rignot E. 2018. Mass loss of Totten and Moscow University Glaciers, East Antarctica, using regionally optimized GRACE mascons. Geophysical Research Letters, 45(14):7010-7018, doi:10.1029/2018gl078173. Pan Y, Zhang C, Gong H L, et al. 2017. Detection of human-induced evapotranspiration using GRACE satellite observations in the Haihe River basin of China. Geophysical Research Letters, 44(1):190-199, doi:10.1002/2016gl071287. Rodell M, Houser P R, Jambor U, et al. 2004. The global land data assimilation system. Bulletin of the American Meteorological Society, 85(3):381-394, doi:10.1175/bams-85-3-381. Rodell M, Velicogna I, Famiglietti J S. 2009. Satellite-based estimates of groundwater depletion in India. Nature, 460(7258):999-1002, doi:10.1038/nature08238. Sasgen I, Martinec Z, Fleming K. 2007. Wiener optimal combination and evaluation of the Gravity Recovery and Climate Experiment (GRACE) gravity fields over Antarctica. Journal of Geophysical Research:Solid Earth, 112(B4):B04401, doi:10.1029/2006jb004605. Seyoum W M, Milewski A M. 2016. Monitoring and comparison of terrestrial water storage changes in the northern high plains using GRACE and in-situ based integrated hydrologic model estimates. Advances in Water Resources, 94:31-44, doi:10.1016/j.advwatres.2016.04.014. Swenson S, Wahr J. 2006. Post-processing removal of correlated errors in GRACE data. Geophysical Research Letters, 33(8):L08402, doi:10.1029/2005gl025285. Swenson S, Chambers D, Wahr J. 2008. Estimating geocenter variations from a combination of GRACE and ocean model output. Journal of Geophysical Research:Solid Earth, 113(B8):B08410, doi:10.1029/2007jb005338. Tapley B D, Bettadpur S, Watkins M, et al. 2004. The gravity recovery and climate experiment:Mission overview and early results. Geophysical Research Letters, 31(9):L09607, doi:10.1029/2004gl019920. Velicogna I, Wahr J. 2006a. Acceleration of Greenland ice mass loss in spring 2004. Nature, 443(7109):329-331, doi:10.1038/nature05168. Velicogna I, Wahr J. 2006b. Measurements of time-variable gravity show mass loss in Antarctica. Science, 311(5768):1754-1756, doi:10.1126/science.1123785. Wahr J, Molenaar M, Bryan F. 1998. Time variability of the Earth's gravity field:Hydrological and oceanic effects and their possible detection using GRACE. Journal of Geophysical Research:Solid Earth, 103(B12):30205-30229, doi:10.1029/98jb02844. Wu L Y, Li H, Zou B Z, et al. 2015. Investigation of water storage variation in the Heihe River using the Forward-Modeling method. Chinese Journal of Geophysics (in Chinese), 58(10):3507-3516, doi:10.6038/cjg20151007. Yin W J, Li T Q, Zheng W, et al. 2020. Improving regional groundwater storage estimates from GRACE and global hydrological models over Tasmania, Australia. Hydrogeology Journal, 28(5):1809-1825, doi:10.1007/s10040-020-02157-3. Zhang L, Yi S, Wang Q Y, et al. 2019. Evaluation of GRACE mascon solutions for small spatial scales and localized mass sources. Geophysical Journal International, 218(2):1307-1321, doi:10.1093/gji/ggz198. Zhao Y F, Zhu J, Xu Y. 2014. Establishment and assessment of the grid precipitation datasets in China for recent 50 years. Journal of the Meteorological Sciences (in Chinese), 34(4):414-420, doi:10.3969/2013jms.0008. Zheng W, Hsu T H, Zhong M, et al. 2014. Precise recovery of the Earth's gravitational field by GRACE Follow-On satellite gravity gradiometry method. Chinese Journal of Geophysics (in Chinese), 57(5):1415-1423, doi:10.6038/cjg20140506. Zhou X, Cambiotti G, Sun W, et al. 2018. Co-seismic slip distribution of the 2011 Tohoku (MW9.0) earthquake inverted from GPS and space-borne gravimetric data. Earth and Planetary Physics, 2(2):120-138, doi:10.26464/epp2018013. 附中文参考文献 冯伟, 王长青, 穆大鹏等. 2017. 基于GRACE的空间约束方法监测华北平原地下水储量变化. 地球物理学报, 60(5):1630-1642, doi:10.6038/cjg20170502. 吴云龙, 李辉, 邹正波等. 2015. 基于Forward-Modeling方法的黑河流域水储量变化特征研究. 地球物理学报, 58(10):3507-3516, doi:10.6038/cjg20151007. 赵煜飞, 朱江, 许艳. 2014. 近50a中国降水格点数据集的建立及质量评估. 气象科学, 34(4):414-420, doi:10.3969/2013jms.0008. 郑伟, 许厚泽, 钟敏等. 2014. 基于GRACE Follow-On卫星重力梯度法精确反演地球重力场. 地球物理学报, 57(5):1415-1423, doi:10.6038/cjg20140506. |
[1] |
WANG Jing, QI Li, HE Jin-Hai, WU Zhi-Wei. Relationship between spring soil moisture in the Tibetan Plateau and summer precipitation in the Yangtze river basin and its possible mechanism[J]. Chinese Journal of Geophysics (in Chinese), 2016, 59(11): 3985-3995. |
[2] |
ZHANG Guo-Qing, FU Guang-Yu, ZHOU Xin, XU Chang-Yi. Retrieve post-seismic gravity changes induced by Sumatra earthquake (Mw9.3) based on the viscoelastic dislocation theory[J]. Chinese Journal of Geophysics (in Chinese), 2015, 58(5): 1654-1665. |
[3] |
ZHAO Rui-Xia;WU Guo-Xiong;ZHANG Hong. Seasonal characteristic and interannual variability of the atmospheric hydrological cycle in the Yangtze River basin during the summer monsoon period[J]. Chinese Journal of Geophysics (in Chinese), 2008, 51(6): 1670-1681. |
|
|
|
|