|
|
Cite this article: |
|
TAN WenHui,
BA Jing,
FU LiYun,et al
.2021.3D rock physics template analysis and “sweet spot” prediction of Longmaxi-Wufeng organic-rich shale.Chinese Journal of Geophysics (in Chinese),64(8): 2900-2915,doi: 10.6038/cjg2021O0380
|
|
|
3D rock physics template analysis and “sweet spot” prediction of Longmaxi-Wufeng organic-rich shale |
TAN WenHui1,2, BA Jing1, FU LiYun3, José M. Carcione1,4, ZHOU Xin1 |
1. School of Earth Sciences and Engineering, Hohai University, Nanjing 211100, China; 2. Sinopec Geophysical Research Institute, Nanjing 211103, China; 3. School of Geosciences, China University of Petroleum(East China), Qingdao Shandong 266580, China; 4. National Institute of Oceanography and Applied Geophysics(OGS), Trieste, Italy |
|
|
Abstract For the purpose of identifying the "sweet spots" of rich shale gas in the Longmaxi-Wufeng target Formations of Dingshan area of Sichuan Basin, this work investigates the key indexes of shale, such as content of total organic carbon (TOC), brittleness, porosity, microfractures, etc. We analyze on the rock characteristics and perform rock physics analysis, and the results show that the sweet spot areas exhibit high TOC, high porosity, low density and high brittleness (high quartz content). Furthermore, λρ (product of the first Lamé constant and density) ranges in 18~30 GPa·g·cm-3, Poisson's ratio υ ranges in 0.18~0.22, and shear modulus μ ranges in 13~18 GPa for those reservoirs. According to the rock physics properties of reservoir, by considering the impact of porosity, crack aspect ratio and mineral components on the sensitive elastic parameters of high-quality shales, EIAS (equivalent inclusion-average stress) model is adopted to establish 3D rock physical templates for shales, and the reservoir porosity, crack aspect ratio and quartz content are predicted. Based on the log data, the constructed 3D rock physics templates are calibrated, and the calibrated templates are applied to the work area. For the 2D seismic test lines (crossing the three wells) and a 3D seismic dataset, porosity, crack aspect ratio, and quartz content are quantitatively estimated. Compared to the actual data analysis, it is concluded that the range of the predicted porosity for high-quality shale reservoirs are in good agreement with the log data. The gas production data for the target layer of the three Wells are consistent with predictions. The characteristics of high porosity, low crack aspect ratio, and high quartz content of rocks of target formation effectively indicate the spatial distribution of high-quality shale reservoirs.
|
Received: 09 October 2020
|
|
|
|
|
Avseth P, Mukerji T, Mavko G. 2005. Quantitative Seismic Interpretation:Applying Rock Physics tools to Reduce Interpretation Risk. Cambridge:Cambridge University Press. Ba J, Yan X F, Chen Z Y, et al. 2013. Rock physics model and gas saturation inversion for heterogeneous gas reservoirs. Chinese J. Geophys. (in Chinese), 56(5):1696-1706, doi:10.6038/cjg20130527. Ba J, Xu W, Fu L Y, et al. 2017. Rock anelasticity due to patchy-saturation and fabric heterogeneity:A double double-porosity model of wave propagation. Journal of Geophysical Research-solid earth, 122(3):1949-1976. Berryman J G. 1980a. Long-wavelength propagation in composite elastic media I. Spherical inclusions. The Journal of the Acoustical Society of America, 68(6):1809-1819. Berryman J G. 1980b. Long-wavelength propagation in composite elastic media Ⅱ. Ellipsoidal inclusions. The Journal of the Acoustical Society of America, 68(6):1820-1831. Bowker K A. 2007. Barnett Shale gas production, Fort Worth Basin:issues and discussion. AAPG Bulletin, 91(4):523-533. Chen S, Zhao W Z, Ouyang Y L, et al. 2017. Comprehensive prediction of shale gas sweet spots based on geophysical properties:a case study of the Lower Silurian Longmaxi Fm in Changning block, Sichuan Baisn. Natural Gas Industry (in Chinese), 37(5):20-30. Deng J X, Wang H, Zhou H, et al. 2015. Microtexture, seismic rock physical properties and modeling of Longmaxi Formation shale. Chinese J. Geophys. (in Chinese), 58(6):2123-2136, doi:10.6038/cjg20150626. Deng J X, Tang Z Y, Li Y, et al. 2018. The influence of the diagenetic process on seismic rock physical properties of Wufeng and Longmaxi Formation shale. Chinese J. Geophys. (in Chinese), 61(2):659-672, doi:10.6038/cjg2018L0062. Dong N, Huo Z Z, Sun Z D, et al. 2014. An investigation of a new rock physics model for shale. Chinese J. Geophys. (in Chinese), 57(6):1990-1998, doi:10.6038/cjg20140629. Endres A L, Knight R J. 1997. Incorporating pore geometry and fluid pressure communication into modeling the elastic behavior of porous rock. Geophysics, 62(1):106-117. Guo Z Q, Li X Y, Liu C, et al. 2013. A shale rock physics model for analysis of brittleness index, mineralogy and porosity in the Barnett Shale. Journal of Geophysics and Engineering, 10(2):025006, doi:10.1088/1742-2132/10/2/025006. Hill R. 1952. The elastic behaviour of a crystalline aggregate. Proceedings of the Physical Society. Section A, 65(5):349-354. Jarvie D M, Hill R J, Ruble T E, et al. 2007. Unconventional shale-gas systems:the Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment. AAPG Bulletin, 91(4):475-499. Li D H, Li J Z, Wang S J, et al. 2009. Analysis of controls on gas shale reservoirs. Natural Gas Industry (in Chinese), 29(5):22-26. Li H B, Zhang J J, Cai S J, et al. 2019. 3D rock physics template for reservoirs with complex pore structure. Chinese J. Geophys. (in Chinese), 62(7):2711-2723, doi:10.6038/cjg2019K0672. Li Q H, Chen M, Jin Y, et al. 2012. Rock mechanical properties and brittleness evaluation of shale gas reservoir. Petroleum Drilling Techniques (in Chinese), 40(4):17-22. Lisle R. 1997. Structural geology of rocks and regions:Davis, G. H. and Reynolds, S. J. 1996. John Wiley and Sons, New York 2nd edition. Price £21.95 (hardback). Journal of Structural Geology, 19(5):752-753. Mavko G, Mukerji T, Dvorkin J. 2009. The Rock Physics Handbook:Tools for Seismic Analysis of Porous Media. New York:Cambridge University Press. Montgomery S L, Jarvie D M, Bowker K A, et al. 2005. Mississippian Barnett Shale, Fort Worth basin, north-central Texas:gas-shale play with multi-trillion cubic foot potential. AAPG Bulletin, 89(2):155-175. Pang M Q, Ba J, Carcione J M, et al. 2019. Estimation of porosity and fluid saturation in carbonates from rock-physics templates based on seismic Q. Geophysics, 84(6):1-12. Pang M Q, Ba J, Carcione J M, et al. 2020. Analysis of attenuation rock-physics template of tight sandstones:reservoir microcrack prediction. Chinese J. Geophys. (in Chinese), 63(11):4205-4219, doi:10.6038/cjg2020N0178. Perez M, Close D, Goodway B, et al. 2011. Developing templates for integrating quantitative geophysics and hydraulic fracture completions data:part I-Principles and theory.//81st Ann. Internat Mtg., Soc. Expi. Geophys.. Expanded Abstracts, 1794-1798. Qin J Z, Shen B J, Fu X D, et al. 2010. Ultramicroscopic organic petrology and potential of hydrocarbon generation and expulsion of quality marine source rocks in South China. Oil and Gasgeology (in Chinese), 31(6):826-837. Rickman R, Mullen M J, Petre J E, et al. 2008. A practical use of shale petrophysics for stimulation design optimization:all shale plays are not clones of the Barnett shale.//78th Ann. Internat Mtg., Soc. Expi. Geophys.. Expanded Abstracts, doi:10.2118/115258-MS. Smart K J, Ofoegbu G I, Morris A P, et al. 2014. Geomechanical modeling of hydraulic fracturing:why mechanical stratigraphy, stress state, and pre-existing structure matter. AAPG Bulletin, 98(11):2237-2261. Tan W H, Ba J, Guo M Q, et al. 2018. Brittleness characteristics of tight oil siltstones. Applied Geophysics, 15(2):175-187. Tan W H, Ba J, Müller T, et al. 2020. Rock physics model of tight oil siltstone for seismic prediction of brittleness. Geophysical Prospecting, 68(5):1554-1574. Wang S F, Zou C N, Dong D Z, et al. 2014. Biogenic silica of organic-rich shale in Sichuan basin and its significance for shale gas. Acta Scientiarum Naturalium Universitatis Pekinensis (in Chinese), 50(3):476-486. Xu S Y, White R E. 1995. A new velocity model for clay-sand mixtures. Geophysical Prospecting, 43(1):91-118. Xu S Y, White R E. 1996. A physical model for shear-wave velocity prediction. Geophysical Prospecting, 44(4):687-717. Xu S Y, Payne M A. 2009. Modeling elastic properties in carbonate rocks. The Leading Edge, 28(1):66-74. Yang L, Ge H K, Shen Y H, et al. 2015. Imbibition inducing tensile fractures and its influence on in-situ stress analyses:a case study of shale gas drilling. Journal of Natural Gas Science and Engineering, 26:927-939. Yang Z Q, He T, Zou C C. 2017. Shales in the Qiongzhusi and Wufeng-Longmaxi Formations:a rock-physics model and analysis of the effective pore aspect ratio. Applied Geophysics, 14(3):325-336. Yin L J, Yin X Y, Zong Z Y, et al. 2020. A new rock physics model method for shale on the theory of micro-nanopores. Chinese J. Geophys. (in Chinese), 63(4):1642-1653, doi:10.6038/cjg2020M0448. Yuan S K, Chen K Y, Hardage B A, et al. 2014. Application of multi-wave exploration technology to detect the natural micro-fracture in Marcellus shale-gas reservoirs. Geophysical Prospecting for Petroleum (in Chinese), 53(5):587-594. Zhang C C, Wang Y M, Dong D Z, et al. 2016. Evaluation of the Wufeng-Longmaxi shale brittleness and prediction of "sweet spot layers" in the Sichuan Basin. Nature Gas Industry (in Chinese), 36(9):51-60. Zhang L, Ba J, Carcione J M, et al. 2020. Differential poroelasticity model for wave dissipation in self-similar rocks. International Journal of Rock Mechanics and Mining Sciences, 128:104281. Zhang L, Ba J, Carcione J M. 2021. Wave propagation in infinituple-porosity media. Journal of Geophysical Research-solid earth. https://doi.org/10.1029/2020JB021266. Zhao W Z, Li J Z, Yang T, et al. 2016. Geological difference and its significance of marine shale gases in South China. Petroleum Exploration and Development (in Chinese), 43(4):499-510. Zou C N, Yang Z, Zhang G S, et al. 2014. Conventional and unconventional petroleum "orderly accumulation":concept and practical significance. Petroleum Exploration and Development (in Chinese), 41(1):14-27. Zou C N, Dong D Z, Wang Y M, et al. 2016. Shale gas in China:characteristics, challenges and prospects (Ⅱ). Petroleum Exploration and Development (in Chinese), 43(2):166-178. 附中文参考文献 巴晶, 晏信飞, 陈志勇等. 2013. 非均质天然气藏的岩石物理模型及含气饱和度反演. 地球物理学报, 56(5):1696-1706, doi:10.6038/cjg20130527. 陈胜, 赵文智, 欧阳永林等. 2017. 利用地球物理综合预测方法识别页岩气储层甜点——以四川盆地长宁区块下志留统龙马溪组为例. 天然气工业, 37(5):20-30. 邓继新, 王欢, 周浩等. 2015. 龙马溪组页岩微观结构、地震岩石物理特征与建模. 地球物理学报, 58(6):2123-2136, doi:10.6038/cjg20150626. 邓继新, 唐郑元, 李越等. 2018. 成岩过程对五峰-龙马溪组页岩地震岩石物理特征的影响. 地球物理学报, 61(2):659-672, doi:10.6038/cjg2018L0062. 董宁, 霍志周, 孙赞东等. 2014. 泥页岩岩石物理建模研究. 地球物理学报, 57(6):1990-1998, doi:10.6038/cjg20140629. 李登华, 李建忠, 王社教等. 2009. 页岩气藏形成条件分析. 天然气工业, 29(5):22-26. 李宏兵, 张佳佳, 蔡生娟等. 2019. 复杂孔隙储层三维岩石物理模版. 地球物理学报, 62(7):2711-2723, doi:10.6038/cjg2019K0672. 李庆辉, 陈勉, 金衍等. 2012. 页岩气储层岩石力学特性及脆性评价. 石油钻探技术, 40(4):17-22. 庞孟强, 巴晶, Carcione J M等. 2020. 致密砂岩衰减岩石物理图板分析:储层微裂隙预测. 地球物理学报, 63(11):4205-4219, doi:10.6038/cjg2020N0178. 秦建中, 申宝剑, 付小东等. 2010. 中国南方海相优质烃源岩超显微有机岩石学与生排烃潜力. 石油与天然气地质, 31(6):826-837. 王淑芳, 邹才能, 董大忠等. 2014. 四川盆地富有机质页岩硅质生物成因及对页岩气开发的意义. 北京大学学报(自然科学版), 50(3):476-486. 印林杰, 印兴耀, 宗兆云等. 2020. 基于微纳米孔隙理论的页岩气储层岩石物理建模方法. 地球物理学报, 63(4):1642-1653, doi:10.6038/cjg2020M0448. 袁书坤, 陈开远, Hardage B A等. 2014. 北美Marcellus页岩气藏多波勘探天然微裂缝检测. 石油物探, 53(5):587-594. 张晨晨, 王玉满, 董大忠等. 2016. 四川盆地五峰组-龙马溪组页岩脆性评价与"甜点层"预测. 天然气工业, 36(9):51-60. 赵文智, 李建忠, 杨涛等. 2016. 中国南方海相页岩气成藏差异性比较与意义. 石油勘探与开发, 43(4):499-510. 邹才能, 杨智, 张国生等. 2014. 常规-非常规油气"有序聚集"理论认识及实践意义. 石油勘探与开发, 41(1):14-27. 邹才能, 董大忠, 王玉满等. 2016. 中国页岩气特征、挑战及前景(二). 石油勘探与开发, 43(2):166-178. |
[1] |
WU HaiBo, HUANG YaPing, ZHANG PingSong, JI GuangZhong, DONG ShouHua, DING Hai. Rock physics model for coal-bed methane reservoir and its application based on equivalent medium theory[J]. Chinese Journal of Geophysics (in Chinese), 2021, 64(6): 2184-2198. |
[2] |
ZHAO LuanXiao, LIU JinShui, YAO YunXia, ZHONG Kai, MA JiQiang, ZOU CaiFeng, CHEN YuanYuan, FU XiaoWei, ZHU XiaoJun, ZHU WeiLin, GENG JianHua. Quantitative seismic characterization of source rocks in lacustrine depositional setting using the Random Forest method: An example from the Changjiang sag in East China Sea basin[J]. Chinese Journal of Geophysics (in Chinese), 2021, 64(2): 700-715. |
[3] |
ZHANG JiaJia, ZENG QingCai, YIN XingYao, LI HongBing, JIANG Ren, HUANG JiaQiang, ZHANG LianQun, ZHANG GuangZhi, GU YiPeng. Multiple-porosity variable critical porosity model and pore structure characterization[J]. Chinese Journal of Geophysics (in Chinese), 2021, 64(2): 724-734. |
|
|
|
|