|
|
Cite this article: |
|
TANG Jie,
LIU YingChang,
LI Cong,et al
.2021.Reverse time location of microseismic source and fracture imaging with attenuation compensation in viscoelastic medium based on low rank approximation.Chinese Journal of Geophysics (in Chinese),64(8): 2858-2876,doi: 10.6038/cjg2021O0206
|
|
|
Reverse time location of microseismic source and fracture imaging with attenuation compensation in viscoelastic medium based on low rank approximation |
TANG Jie, LIU YingChang, LI Cong, SUN ChengYu |
School of Geosciences, China University of Petroleum, Shandong Qingdao 266580, China |
|
|
Abstract Due to the viscoelasticity of real underground media, dissipation and dispersion occur when seismic wave propagates. If the absorption effect of the viscoelastic medium is not considered, the backpropagation wave field will have amplitude weakening and phase distortion, making it difficult to locate the source accurately. Therefore, it is necessary to compensate for the attenuation of the wave field propagating in the viscoelastic medium, and then use the appropriate imaging operator to locate the microseismic source and image the fracture. In this paper, we simulate wavefield propagation with the fractional order viscoelastic wave equation decoupled from dissipation and dispersion, and use low rank decomposition to approximate the mixed domain operator. The dissipation sign is inverted in the separated attenuation related terms, and low-pass filtering is performed in the wavenumber domain of the compensated attenuation term. We derive the wave equation of viscoelastic medium with attenuation compensation. The optimized imaging operator is used to locate the microseismic source. By separating the scattering data, we backpropagate scattering wave to image fracture. Numerical examples show that this method can improve the calculation efficiency by low rank approximation. Under the constraint of low-pass filter, the attenuation compensation operator can stably compensate the backpropagation wavefield. The optimized imaging operator can further improve the calculation efficiency and location resolution while suppressing random noise.
|
Received: 24 August 2020
|
|
|
|
|
Artman B, Podladtchikov I, Witten B. 2010. Source location using time-reverse imaging. Geophysical Prospecting, 58(5):861-873. Bai T, Zhu T Y, Tsvankin I. 2019. Attenuation compensation for time-reversal imaging in VTI media. Geophysics, 84(4):C205-C216. Carcione J M, Cavallini F, Mainardi F, et al. 2002. Time-domain modeling of constant-q seismic waves using fractional derivatives. Pure and Applied Geophysics, 159(7):1719-1736. Carcione J M. 2009. Theory and modeling of constant-Q P-and S-waves using fractional time derivatives. Geophysics, 74(1):T1-T11. Carcione J M. 2010. A generalization of the Fourier pseudospectral method. Geophysics, 75(6):A53-A56. Chen B, Jia X F. 2014. Staining algorithm for seismic modeling and migration. Geophysics, 79(4):S121-S129. Chen H M, Zhou H, Li Q Q, et al. 2016. Two efficient modeling schemes for fractional Laplacian viscoacoustic wave equation. Geophysics, 81(5):T233-T249. Fink M. 2006. Time-reversal acoustics in complex environments. Geophysics, 71(4):SI151-SI164. Firouzi K, Cox B T, Treeby B E, et al. 2012. A first-order k-space model for elastic wave propagation in heterogeneous media. The Journal of the Acoustical Society of America, 132(3):1271-1283. Fomel S, Ying L X, Song X L. 2013. Seismic wave extrapolation using lowrank symbol approximation. Geophysical Prospecting, 61(3):526-536. Ge Q X, Han L G, Jin Z Y. 2017. Time-reverse imaging of source location based on random backward propagation and sifting model. Chinese Journal of Geophysics (in Chinese), 60(7):2869-2884,doi:10.6038/cjg20170731. Guo P, McMechan G A, Ren L. 2019. Modeling the viscoelastic effects in P-waves with modified viscoacoustic wave propagation. Geophysics, 84(6):T381-T394. Huang J Q, Li Z C. 2019. Least-squares reverse time migration of pure qP-wave pre-stack plane-waves based on Low-rank finite difference for anisotropic media. Chinese Journal of Geophysics (in Chinese), 62(8):3106-3129,doi:10.6038/cjg2019M0188. Kjartansson E. 1979. Constant Q-wave propagation and attenuation. Journal of Geophysical Research:Solid Earth, 84(B9):4737-4748. Larmat C S, Guyer R A, Johnson P A. 2009. Tremor source location using time reversal:Selecting the appropriate imaging field. Geophysical Research Letters, 36(22):L22304,doi:10.1029/2009GL040099. Maxwell S C, Urbancic T I. 2001. The role of passive microseismic monitoring in the instrumented oil field. The Leading Edge, 20(6):636-639. McMechan G A. 1982. Determination of source parameters by wavefield extrapolation. Geophysical Journal International, 71(3):613-628. Nakata N, Beroza G C. 2016. Reverse time migration for microseismic sources using the geometric mean as an imaging condition. Geophysics, 81(2):KS51-KS60. Song X L, Fomel S, Ying L X. 2013. Lowrank finite-differences and lowrank Fourier finite-differences for seismic wave extrapolation in the acoustic approximation. Geophysical Journal International, 193(2):960-969. Steiner B, Saenger E H, Schmalholz S M. 2008. Time reverse modeling of low-frequency microtremors:Application to hydrocarbon reservoir localization. Geophysical Research Letters, 35(3):L03307, doi:10.1029/2007GL032097. Sun J Z, Zhu T Y, Fomel S. 2015. Viscoacoustic modeling and imaging using low-rank approximation. Geophysics, 80(5):A103-A108. Tang J, Liu Y C, Wen L, et al. 2020. Time-reverse location of microseismic sources in viscoelastic orthotropic anisotropic medium based on attenuation compensation. Applied Geophysics, 17(4):554-560. Treeby B E, Cox B T. 2010. Modeling power law absorption and dispersion for acoustic propagation using the fractional Laplacian. The Journal of the Acoustical Society of America, 127(5):2741-2748. Treeby B E, Zhang E Z, Cox B T. 2010. Photoacoustic tomography in absorbing acoustic media using time reversal. Inverse Problems, 26(11):115003,doi:10.1088/0266-5611/26/11/115003. Wang N, Zhou H, Chen H M, et al. 2018. A constant fractional-order viscoelastic wave equation and its numerical simulation scheme. Geophysics, 83(1):T39-T48. Wu Y, Fu L Y, Chen G X. 2017. Forward modeling and reverse time migration of viscoacoustic media using decoupled fractional Laplacians. Chinese Journal of Geophysics (in Chinese), 60(4):1527-1537,doi:10.6038/cjg20170425. Yang R H, Chang X, Liu Y K. 2009. Viscoelastic wave modeling in heterogeneous and isotropic media. Chinese Journal of Geophysics (in Chinese), 52(9):2321-2327, doi:10.3969/j.issn.0001-5733.2009.09.016. Yao J, Zhu T Y, Hussain F, et al. 2017. Locally solving fractional Laplacian viscoacoustic wave equation using Hermite distributed approximating functional method. Geophysics, 82(2):T59-T67. Yuan J L, Yu J S, Fu X B, et al. 2020. Antinoise performance of time-reverse imaging conditions for microseismic location. Geophysics, 85(3):KS75-KS87. Yuan Y X, Hu T, Wang Z Y, et al. 2018. Solving second-order decoupled elastic wave equation using low-rank decomposition and low-rank finite differences. Chinese Journal of Geophysics (in Chinese), 61(8):3324-3333,doi:10.6038/cjg2018L0257. Zhu T Y, Carcione J M. 2014. Theory and modelling of constant-Q P-and S-waves using fractional spatial derivatives. Geophysical Journal International, 196(3):1787-1795 Zhu T Y. 2014. Time-reverse modelling of acoustic wave propagation inattenuating media. Geophysical Journal International, 197(1):483-494. Zhu T Y. 2015. Viscoelastic time-reversal imaging. Geophysics, 80(2):A45-A50. Zhu T Y. 2019. Passive seismic imaging of subwavelength natural fractures:Theory and 2-D synthetic and ultrasonic data tests. Geophysical Journal International, 216(3):1831-1841. 附中文参考文献 葛奇鑫, 韩立国, 靳中原. 2017. 基于随机反传和筛选模型的微震逆时定位成像. 地球物理学报, 60(7):2869-2884,doi:10.6038/cjg20170731. 黄金强, 李振春. 2019. 各向异性介质Low-rank有限差分法纯qP波叠前平面波最小二乘逆时偏移. 地球物理学报, 62(8):3106-3129,doi:10.6038/cjg2019M0188. 吴玉, 符力耘, 陈高祥. 2017. 基于分数阶拉普拉斯算子解耦的黏声介质地震正演模拟与逆时偏移. 地球物理学报, 60(4):1527-1537,doi:10.6038/cjg20170425. 杨仁虎, 常旭, 刘伊克. 2009. 基于非均匀各向同性介质的黏弹性波正演数值模拟. 地球物理学报, 52(9):2321-2327,doi:10.3969/j.issn.0001-5733.2009.09.016. 袁雨欣, 胡婷, 王之洋等. 2018. 求解二阶解耦弹性波方程的低秩分解法和低秩有限差分法. 地球物理学报, 61(8):3324-3333,doi:10.6038/cjg2018L0257. |
[1] |
ZHANG YiLun, YU ZhiChao, HU TianYue, HE Chuan. Multi-trace joint downhole microseismic phase detection and arrival picking method based on U-Net[J]. Chinese Journal of Geophysics (in Chinese), 2021, 64(6): 2073-2085. |
[2] |
WANG HongHua, GONG JunBo, LIANG ZhiHuan, ZHANG Zhi, XU Tao. Three-dimensional reverse time migration of ground penetrating radar data based on electromagnetic wave attenuated compensation[J]. Chinese Journal of Geophysics (in Chinese), 2021, 64(6): 2141-2152. |
[3] |
CHENG ShiJun, MAO WeiJian, OUYANG Wei. Plane wave propagation in viscoelastic attenuative VTI media based on fractional time derivatives[J]. Chinese Journal of Geophysics (in Chinese), 2021, 64(3): 965-981. |
|
|
|
|