|
|
Cite this article: |
|
CHEN XiaoDong,
LI Hang,
DENG MingLi,et al
.2020.Experimental study of the surface subsidence in the city using gravity observing techniques.Chinese Journal of Geophysics (in Chinese),63(8): 2882-2892,doi: 10.6038/cjg2020N0080
|
|
|
Experimental study of the surface subsidence in the city using gravity observing techniques |
CHEN XiaoDong1,2, LI Hang1,2, DENG MingLi1, JIANG LiMing1,2, SUN HePing1,2, LI DeWei1,2, ZHANG WeiMin1, HAO HongTao3, SANG Peng1, BAI Lin4 |
1. State Key Laboratory of Geodesy and Earth's Dynamics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430077, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China; 3. Institute of Seismology, China Earthquake Administration, Wuhan 430071, China; 4. Chang'an University, Xi'an 710064, China |
|
|
Abstract Experimental study of the surface subsidence in the city using the gravity observing techniques is carried out in the paper. There are 7 gravity campaigns at regions with comparatively large surface subsidence in Wuhan city, China. The gravity results are finally verified by the vertical displacements observed by D-InSAR. Numerical results show that the point-value mean accuracies after the whole network adjustment for all the 7 gravity campaigns are all smaller than 10×10-8m·s-2, which indicates that high-accuracy regional gravity variations can be obtained by gravity measurements. The gravity change between the 7th and the 1st campaign is compared with vertical displacements observed by D-InSAR in almost the same time interval. The comparison shows that most of the regions with increased gravity change are coincided with those that have surface subsidence observed by D-InSAR, which accounts for the gravity increase mainly induced by the surface subsidence. The largest gravity change obtained from the 1st campaign to the 2nd and 7th ones reaches about 40×10-8m·s-2 in about 12 months. And the surface subsidence is a continuous variation because some regional gravity values are gradually increasing. Results in the study show that gravity observation techniques can provide gravity constrain to the surface subsidence in the city and the subsidence mechanism explanation.
|
Received: 06 May 2019
|
|
|
|
|
Bai L, Jiang L M, Wang H S, et al. 2016. Spatiotemporal Characterization of Land Subsidence and Uplift (2009-2010) over Wuhan in Central China Revealed by TerraSAR-X InSAR Analysis. Remote Sensing, 8(4):350, doi:10.3390/rs8040350. Chai H, Wang H B, Wu L, et al. 2015. Land based inertial gravimetry research by static experiment. Journal of Geodesy and Geodynamics (in Chinese), 35(6):953-956, 968. Cui X W. 2018. Application of the leveling measurements in the monitoring of the surface subsidence. Resource Information and Engineering (in Chinese), 33(4):125-126. Fan S K. 2006. A discussion on karst collapse in Wuhan (Hubei). Resources Environment & Engineering (in Chinese), 20(S1):608-616. Fu G Y, She Y W. 2017. Gravity anomalies and isostasy deduced from new dense gravimetry around the Tsangpo gorge, Tibet. Geophysical Research Letters, 44(20):10233-10239. Furuya M, Okubo S, Sun W K, et al. 2003. Spatiotemporal gravity changes at Miyakejima Volcano, Japan:Caldera collapse, explosive eruptions and magma movement. Journal of Geophysical Research:Solid Earth, 108(B4):2219-2227, doi:10.1029/2002JB001989. Güntner A, Reich M, Mikolaj M, et al. 2017. Landscape-scale water balance monitoring with an iGrav superconducting gravimeter in a field enclosure. Hydrology and Earth System Sciences, 21(6):3167-3182. Gao S J, Hao W F, Li F, et al. 2018. Progress in application of airborne gravity measurements in Polar Regions. Chinese Journal of Polar Research (in Chinese), 31(1):97-113. He J. 2017. Research on the application of GNSS technique in geological disaster monitoring-taking Wujiayan unstable slope in Penzhou city as an example[Master's thesis] (in Chinese). Chengdu:Southwest Jiaotong University. Hinderer J, Calvo M, Abdelfettah Y, et al. 2015. Monitoring of a geothermal reservoir by hybrid gravimetry; Feasibility study applied to the Soultz-sous-Forêts and Rittershoffen sites in the Rhine graben. Geothermal Energy, 3:1-19, doi:10.1186/s40517-015-0035-3. Hu P H, Zhao M, Huang H, et al. 2017. Review on the Development of airborne/marine gravimetry instruments. Navigation Positioning and Timing (in Chinese), 4(4):10-19. Kazama T, Okubo S. 2009. Hydrological modeling of groundwater disturbances to observed gravity:Theory and application to Asama Volcano, Central Japan. Journal of Geophysical Research:Solid Earth, 114(B8):B08402, doi:10.1029/2009JB006391. Lampitelli C, Francis O. 2010. Hydrological effects on gravity and correlations between gravitational variations and level of the Alzette River at the station of Walferdange, Luxembourg. Journal of Geodynamics, 49(1):31-38. Liu K S, Gong H L, Chen B B. 2018. Monitoring and analysis of land subsidence of Beijing metro line 6 based on InSAR data. Journal of Geo-Information Science (in Chinese), 20(1):128-137. Luo J Z, Liu J Z, Kong Y Y, et al. 2017. Research on Tianjin land subsidence with GPS. Hydrographic Surveying and Charting (in Chinese), 37(3):60-62. Mao J L, Zhu Y Q. 2018. Progress in the application of ground gravity observation data in earthquake prediction. Advances in Earth Science (in Chinese), 33(3):236-247. Ouyang L X, Li X Q, Hui F M, et al. 2017. Sentinel-1A data products' characteristics and the potential applications. Chinese Journal of Polar Research (in Chinese), 29(2):286-295. Portier N, Hinderer J, Riccardi U, et al. 2018. Hybrid gravimetry monitoring of Soultz-sous-Forêts and Rittershoffen geothermal sites (Alsace, France). Geothermics, 76:201-219. Qin X Q, Liao M S, Yang M S, et al. 2016. Monitoring Shanghai relocation housing skew deformation using high resolution PS-InSAR technology. Bulletin of Surveying and Mapping (in Chinese), (6):18-21. Sun H P, Xu J Q, Cui X M. 2017. Research progress of the gravity field application in Earth's geodynamics and interior structure. Acta Geodaetica et Cartographica Sinica (in Chinese), 46(10):1290-1299. Tapley B D, Bettadpur S, Watkins M, et al. 2004. The gravity recovery and climate experiment:mission overview and early results. Geophysical Research Letter, 31:L09607, doi:10.1029/2004GL019920. Visser P N A M. 1999. Gravity field determination with GOCE and GRACE. Advances in Space Research, 23(4):771-776. Wang P H. 2017. The application of PS-InSAR technology in Shenzhen Futian settlement monitoring[Master's thesis] (in Chinese). Beijing:China University of Geosciences (Beijing). Wu H R. 2018. A brief analysis of the precise leveling observations of the surface subsidence in the urban area. Neijiang Science and Technology (in Chinese), (6):73,85. Yang T L, Xu Y. 2017. Research trends in international land subsidence and urban security:An overview of the First International Symposium on Urban Geology. Shanghai Land & Resources (in Chinese), 38(2):1-3. Yu R H, Cai S K, Wu M P, et al. 2015. A study of SINS/GNSS strapdown ground vehicle gravimetry test. Geophysical and Geochemical Exploration (in Chinese), 39(S1):67-71. Yuan M, Bai J W, Qin Y K. 2016. A review on land subsidence research. Journal of Suzhou University of Science and Technology (Natural Science) (in Chinese), 33(1):1-5. Zhang C Y, Wang W, Gan W J, et al. 2018. Monitoring temporal and spatial changes of crustal deformation and gravity field caused by environmental load in the Three Gorges Reservoir region based on CORS network. Geomatics and Information Science of Wuhan University (in Chinese), 43(9):1287-1294. Zhu Y Q, Liang W F, Zhao Y F, et al. 2017. Gravity changes before the Jiuzhaigou, Sichuan, MS7.0 earthquake of 2017. Chinese Journal of Geophysics (in Chinese), 60(10):4124-4131, doi:10.ssss/j.issn.0001-5733.2017.10.036. 附中文参考文献 柴华, 王虎彪, 武凛等. 2015. 陆地惯性重力测量静态试验研究. 大地测量与地球动力学, 2015, 35(6):953-956, 968. 崔效文. 2018. 地面沉降监测中水准测量的应用. 资源信息与工程, 33(4):125-126. 范士凯. 2006. 武汉(湖北)地区岩溶地面塌陷. 资源环境与工程, 20(S1):608-616. 高晟俊, 郝卫峰, 李斐等. 2018. 极地航空重力测量及其应用进展. 极地研究, 30(1):97-113. 何杰. 2017. GNSS定位技术在地质灾害监测中的应用——以彭州市吴家岩不稳定斜坡为例[硕士论文]. 成都:西南交通大学. 胡平华, 赵明, 黄鹤等. 2017. 航空/海洋重力测量仪器发展综述. 导航定位与授时, 4(4):10-19. 刘凯斯, 宫辉力, 陈蓓蓓. 2018. 基于InSAR数据的北京地铁6号线地面沉降监测分析. 地球信息科学学报, 20(1):128-137. 罗建忠, 刘金柱, 孔友谊等. 2017. GPS在天津市地面沉降监测中的应用. 海洋测绘, 37(3):60-62. 毛经伦, 祝意青. 2018. 地面重力观测数据在地震预测中的应用研究与进展. 地球科学进展, 33(3):236-247. 欧阳伦曦, 李新情, 惠凤鸣等. 2017. 哨兵卫星Sentinel-1A数据特性及应用潜力分析. 极地研究, 29(2):286-295. 秦晓琼, 廖明生, 杨梦诗等. 2016. 应用高分辨率PS-InSAR技术监测上海动迁房歪斜形变. 测绘通报, (6):18-21. 孙和平, 徐建桥, 崔小明. 2017. 重力场的地球动力学与内部结构应用研究进展. 测绘学报, 46(10):1290-1299. 王平豪. 2017. PS-InSAR在沉降监测中的应用研究——以深圳福田区为例[硕士论文]. 北京:中国地质大学(北京). 吴红让. 2018. 精密水准在城市区域地表沉降测量浅析. 内江科技, (6):73,85. 杨天亮, 许言. 2017. 国际地面沉降与城市安全研究动态——第一届国际城市地质学术研讨会综述. 上海国土资源, 38(2):1-3. 于瑞航, 蔡劭琨, 吴美平等. 2015. 基于SINS/GNSS的捷联式车载重力测量研究. 物探与化探, 39(S1):67-71. 袁铭, 白俊武, 秦永宽. 2016. 国内外地面沉降研究综述. 苏州科技学院学报(自然科学版), 33(1):1-5. 章传银, 王伟, 甘卫军等. 2018. 利用CORS站网监测三峡地区环境负荷引起的地壳形变与重力场时空变化. 武汉大学学报(信息科学版), 43(9):1287-1294. 祝意青, 梁伟锋, 赵云峰等. 2017. 2017年四川九寨沟MS7.0地震前区域重力场变化. 地球物理学报, 60(10):4124-4131, doi:10.ssss/j.issn.0001-5733.2017.10.036. |
[1] |
ZHANG Ming, GAO Han, NIU Yu-fen, QU Fei-fei, WAN Hong-lin, ZHANG Wei. Coseismicdeformation focal mechanisms inversion for 2016 Menyuan earthquake by DInSAR observations[J]. Progress in Geophysics, 2017, 32(3): 1089-1094. |
[2] |
WEN Shao-Yan, SHAN Xin-Jian, ZHANG Ying-Feng, WANG Jia-Qing, ZHANG Guo-Hong, QU Chun-Yan, XU Xiao-Bo. Three-dimensional co-seismic deformation of the Da Qaidam, Qinghai earthquakes derived from D-InSAR data and their source features[J]. Chinese Journal of Geophysics (in Chinese), 2016, 59(3): 912-921. |
[3] |
TIAN Xin, LIAO Ming-Sheng. The analysis of conditions for InSAR in the field of deformation monitoring[J]. Chinese Journal of Geophysics (in Chinese), 2013, 56(3): 812-823. |
|
|
|
|