CHEN Chao,
YIN XingYao,
LIU XiaoJing et al
.2022.Fracture density inversion based on azimuthal anisotropy and its application Chinese Journal of Geophysics(in Chinese),65(1): 371-383,doi: 10.6038/cjg2022O0528
Abstract:The fracture prediction is an important area in petroleum geophysics. The shale gas reservoir with the vertical fractures can be equivalent to the transverse isotropy with the horizontal symmetry (HTI). In this paper, a new method of fracture density prediction was proposed based on the relationship between the fracture weakness parameters and the fracture density. Firstly, a new azimuthal AVO approximation equation and an azimuthal elastic impedance equation, which reflect the fracture density, were established. Then, an objective function for group-based sparse azimuth elastic impedance inversion was established with the Bayesian theory. On this basis, the stiffness matrix was solved by the damping least square method, and the shear modulus, normal and tangential weakness parameters were obtained. Finally, the relation between the fracture weakness parameters and the fracture density was used to predict the fracture density quantitatively. The reliability of fracture density estimation method was verified using the model and field tests.
Al-Marzoug A M, Neves F A, Kim J J, et al. 2006. P-wave Anisotropy from Azimuthal AVO and velocity estimates using 3D seismic data from Saudi Arabia. Geophysics, 71(2):E7-E11. Bakulin A, Grechka V, Tsvankin I. Estimation of fracture parameters from reflection seismic data-Part I:HTI model due to a single fracture set. Geophysics, 2000, 65:1788-1802. Chang X, Guo Y T, Zhou J, et al. 2018. Numerical and experimental investigations of the interactions between hydraulic and natural fractures in shale formations. Energies, 11(10):2541, doi:10.3390/en11102541. Chapman M. 2009. Modeling the effect of multiple sets of mesoscale fractures in porous rock on frequency-dependent anisotropy.Geophysics, 74(6):D97-D103. Chen H Z, Yin X Y, Gao J H, et al. 2015. Seismic inversion for underground fractures detection based on effective anisotropy and fluid substitution. Science China Earth Sciences(in Chinese), 58(5):805-814. Chen H Z, Chen T S, Innanen K A. 2020. Estimating tilted fracture weaknesses from azimuthal differences in seismic amplitude data. Geophysics, 85(3):R135-R146. Connolly P. 1999. Elastic impedance.The Leading Edge, 18(4):438-452. Downton J E,Roure B. 2015. Interpreting azimuthal Fourier coefficients for anisotropic and fracture parameters. Interpretation, 3(3):ST9-ST27. Guo T C, Wang H J, Guo Y L, et al. 2019. Fracture Prediction based on an Improved Anisotropy Inversion:a Shale Reservoir Fracture Prediction Case Study.//89th Ann. Internat Mtg., Soc. Expi. Geophys.. Expanded Abstracts, 414-418. Guo Y T, Yang C H, Wang L, et al. 2018. Study on the influence of bedding density on hydraulic fracturing in shale. Arabian Journal for Science and Engineering, 43(11):6493-6508. He Z L,Nie H K, Hu D F, et al. 2020. Geological problems in the effective development of deep shale gas:a case study of Upper Ordovician Wufeng-Lower Silurian Longmaxi formations in Sichuan Basin and its periphery. Acta Petrolei Sinica(in Chinese), 41(4):379-391. Hudson J A. 1980. Overall properties of a cracked solid.Mathematical Proceedings of the Cambridge Philosophical Society, 88(2):371-384. Hudson J A. 1986. A higher order approximation to the wave propagation constants for a cracked solid.Geophysical Journal International, 87(1):265-274. Li L, Zhang J J, Pan X P, et al. 2020. Azimuthal elastic impedance-based Fourier coefficient variation with angle inversion for fracture weakness. Petroleum Science, 17(1):86-104. Ma Z Q, Yin X Y, Zong Z Y, et al. 2019. Azimuthally variation of elastic impedances for fracture estimation. Journal of Petroleum Science and Engineering, 181:106112, doi:10.1016/j.petrol.2019.05.063. Pan X P, Li L, Zhang G Z. 2020a. Multiscale frequency-domain seismic inversion for fracture weakness. Journal of Petroleum Science and Engineering, 195:107845, doi:10.1016/J.PETROL.2020.107845. Pan X P, Li L, Zhang G Z, et al. 2020b. Elastic-impedance-based fluid/porosity term and fracture weaknesses inversion in transversely isotropic media with a tilted axis of symmetry. Geofluids, 2020, 2020:7026408, doi:10.1155/2020/7026408. Pan, X., Li, L., Zhou, S., et al., 2021. Azimuthal amplitude variation with offset parameterization and inversion for fracture weaknesses in tilted transversely isotropic media. GEOPHYSICS, 86(1), C1-C18. DOI:10.1190/geo2019-0215.1. Quintal B,Schmalholz S M, Podladchikov Y Y. 2011. Impact of fluid saturation on the reflection coefficient of a poroelastic layer. Geophysics, 76(2):N1-N12. Rüger A. 1996. Reflection coefficients and azimuthal AVO analysis in anisotropic media[Ph. D. thesis]. Gordon, USA:Colorado School of Mines, 1996. Rüger A. 1998. Variation of P-wave reflectivity with offset and azimuth in anisotropic media. Geophysics, 63(3):935-947. Schoenberg M. 1983. Reflection of elastic waves from periodically stratified media with interfacial slip.Geophysical Prospecting, 31(2):265-292. Thomsen L. 1986. Weak elastic anisotropy.Geophysics, 51(10):1954-1966. Thomsen L.1995. Elastic anisotropy due to aligned cracks in porous rock. Geophysical Prospecting, 1995, 43(6):805-829. Wang Y, Liu Y Y, Zhang M G. 2017. Seismic Equivalent Medium Theory for Fractured Anisotropy (in Chinese). Beijing:Science Press. Wang Y, Wang C, Li J F, et al. 2019. Frequency-dependent S-wave splitting parameters analysis:A case study from azimuthal PS data, Sanhu area of the Qaidam Basin, China. Geophysics, 84(6):B375-B386. Xue J, Gu H M, Cai C G. 2017. Model-based amplitude versus offset and azimuth inversion for estimating fracture parameters and fluid content. Geophysics, 82(2):M1-M17. Yin X Y, Zhang S X, Zhang F. 2013. Two-term elastic impedance inversion and Russell fluid factor direct estimation method for deep reservoir fluid identification.Chinese Journal of Geophysics (in Chinese), 56(7):2378-2390, doi:10.6038/cjg20130724. Yin X Y, Gao J H,Zong Z Y. 2014. Curvature attribute based on dip scan with eccentric window. Chinese Journal of Geophysics (in Chinese), 57(10):3411-3421, doi:10.6038/cjg20141027. Yin X Y, Zhang S X. 2014. Bayesian inversion for effective pore-fluid bulk modulus based on fluid-matrix decoupled amplitude variation with offset approximation. Geophysics, 79(5):R221-R232. Yin X Y, Zhang H X,Zong Z Y. 2020. Seismic fluid identification based on 5D seismic data. Applied Acoustics (in Chinese), 39(1):63-70. Zhang F, Li X Y. 2013. Generalized approximations of reflection coefficients in orthorhombic media. Journal of Geophysics and Engineering, 10(5):054004, doi:10.1088/1742-2132/10/5/054004. Zhang F, Li X Y. 2015. Exact elastic impedance tensor for isotropic media.Science China Earth Sciences, 58(8):1350-1360. Zhang F, Li X Y. 2016. Exact elastic impedance matrices for transversely isotropic medium. Geophysics, 81(2):C1-C15. Zong Z Y, Yin X Y, Wu G C. 2012. AVO inversion and poroelasticity with P-and S-wave moduli. Geophysics, 77(6):N17-N24. Zong Z Y, Yin X Y, Wu G C. 2013. Elastic impedance parameterization and inversion with Young's modulus and Poisson's ratio. Geophysics, 78(6):N35-N42. Zong Z Y, Yin X Y, Wu G C. 2015. Geofluid discrimination incorporating poroelasticity and seismic reflection Inversion. Surveys in Geophysics, 36(5):659-681. 附中文参考文献 陈怀震, 印兴耀, 高建虎等. 2015. 基于等效各向异性和流体替换的地下裂缝地震预测方法. 中国科学:地球科学, 45(5):589-600. 何治亮,聂海宽,胡东风,蒋廷学,王濡岳,张钰莹,张光荣,卢志远.深层页岩气有效开发中的地质问题——以四川盆地及其周缘五峰组-龙马溪组为例.石油学报,2020,41(04):379-391. 王赟, 刘媛媛, 张美根. 2017. 裂缝各向异性地震等效介质理论. 北京:科学出版社. 印兴耀, 张世鑫, 张峰. 2013. 针对深层流体识别的两项弹性阻抗反演与Russell流体因子直接估算方法研究. 地球物理学报, 56(7):2378-2390, doi:10.6038/cjg20130724. 印兴耀, 高京华, 宗兆云. 2014. 基于离心窗倾角扫描的曲率属性提取. 地球物理学报, 57(10):3411-3421, doi:10.6038/cjg20141027. 印兴耀, 张洪学, 宗兆云. 2020. 五维地震油气识别方法. 应用声学, 39(1):63-70. 张峰, 李向阳. 2015. 各向同性介质弹性阻抗的张量表示. 中国科学:地球科学, 45(6):799-810.