CHEN QiFu,
WANG Xin,
JIANG JinZhong et al
.2021.The Northwest Pacific subduction zone and its deep earthquake activity Chinese Journal of Geophysics(in Chinese),64(12): 4394-4405,doi: 10.6038/cjg2021P0038
The Northwest Pacific subduction zone and its deep earthquake activity
CHEN QiFu1,2,3, WANG Xin1,2, JIANG JinZhong4, LI TianJue5
1. Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China 2. Heilongjiang Mohe Observatory of Geophysics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China 3. College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China 4. Yunnan Earthquake Agency, Kunming 650224, China 5. School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
Abstract:The subduction process drives the material cycling and energy exchange between Earth's surface and its deep interior, and thus the subduction zones are pivotal for understanding the evolution of continental lithosphere, the subduction-related earthquakes, volcanos, ore deposits, etc. This paper focuses on the Northwest Pacific subduction zone and summarizes our present understandings of the subducting slab from the Japan Trench to Northeast China based on multiple seismic investigations. Stress inversion shows that the principal compressive stress axis of the slab is subparallel to the subducting direction, indicating a close relationship for the shallow and deep strong earthquakes associated with the subducting slab. A metastable olivine wedge (MOW) does exist within the subducting slab at the mantle transition zone (MTZ) depth, with most deep earthquakes occurred within and in the vicinity of the MOW, favoring the dual-mechanism hypothesis as the initiation mechanism of deep earthquakes. Seismic observations show the upper and lower boundaries of the subducting high-velocity slab at MTZ depths (410 to 660 km), suggesting a compositionally layered slab and high water contents beneath the slab. A better understanding of the slab structures and the dynamic processes of the Pacific subduction zone, which is a very rare region with intense deep seismicity beneath continents, requires the efforts of interdisciplinary teams to carry out joint sea-land geophysical investigations, high-pressure/high-temperature experiments, and geodynamic simulations for the Northwest Pacific subduction zone.
Ai Y S, Zheng T Y, Xu W W, et al. 2003. A complex 660 km discontinuity beneath Northeast China. Earth Planet Sci. Lett., 212(1-2):63-71. Argus D F, Gordon R G, DeMets C. 2011. Geologically current motion of 56 plates relative to the no-net-rotation reference frame. Geochem. Geophys. Geosyst., 12(11):Q11001, doi:10.1029/2011GC003751. Chen C X, Zhao D P, Tian Y, et al. 2017. Mantle transition zone, stagnant slab and intraplate volcanism in Northeast Asia. Geophys. J. Int., 209(1):68-85. Christova C. 2004. Stress field in the Ryukyu-Kyushu Wadati-Benioff zone by inversion of earthquake focal mechanisms. Tectonophysics, 384(1-4):175-189. DeMets C. 1992. Oblique convergence and deformation along the Kuril and Japan trenches. J. Geophys. Res., 97(B12):17615-17625. Deuss A, Woodhouse J. 2001. Seismic observations of splitting of the mid-transition zone discontinuity in Earth's mantle. Science, 294(5541):354-357. Forsyth D, Uyeda S. 1975. On the relative importance of the driving forces of plate motion. Geophys. J. Int., 43(1):163-200. Frohlich C. 1989. The nature of deep-focus earthquakes. Ann. Rev. Earth Planet. Sci., 17:227-254. Frohlich C. 2006. Deep Earthquakes. Cambridge:Cambridge University Press. Furumura T, Kennett B L N, Padhy S. 2016. Enhanced waveguide effect for deep-focus earthquakes in the subducting Pacific slab produced by a metastable olivine wedge. J. Geophys. Res., 121(9):6779-6796, doi:10.1002/2016JB013300. Gan W, Jin Z M, Wu Y, et al. 2012. A review of the mechanism of deep earthquakes:Current situation and problems. Earth Science Frontiers (in Chinese), 19(4):15-29. Gou T, Zhao D P, Huang Z C, et al. 2018. Anisotropic 3-D ray tracing and its application to Japan subduction zone. J. Geophys. Res., 123(5):4088-4108. Gréaux S, Irifune T, Higo Y, et al. 2019. Sound velocity of CaSiO3 perovskite suggests the presence of basaltic crust in the Earth's lower mantle. Nature, 565(7738):218-221. GreenII H W, Houston H. 1995. The mechanics of deep earthquakes. Ann. Rev. Earth Planet. Sci., 23:169-213. Hao M, Zhuang W Q. 2020. The impact of the great 2011 Tohoku-oki earthquake on crustal deformation in eastern China. J. Geod. Geodynam. (in Chinese), 40(6):555-558, 564. Hardebeck J L, Michael A J. 2006. Damped regional-scale stress inversions:Methodology and examples for southern California and the Coalinga aftershock sequence. J. Geophys. Res., 111(B11):B11310, doi:10.1029/2005JB004144. Hasegawa A, Umino N, Takagi A, et al. 1979. Double-planed deep seismic zone and anomalous structure in the upper mantle beneath northeastern Honshu (Japan). Tectonophysics, 57(1):1-6. Hasegawa A, Horiuchi S, Umino N. 1994. Seismic structure of the northeastern Japan convergent margin:A synthesis. J. Geophys. Res., 99(B11):22295-22311. Hasegawa A, Nakajima J, Umino N, et al. 2005. Deep structure of the northeastern Japan arc and its implications for crustal deformation and shallow seismic activity. Tectonophysics, 403(1-4):59-75. Hayes G P, Wald D J, Johnson R L. 2012. Slab1.0:A three-dimensional model of global subduction zone geometries. J. Geophys. Res., 117(B1):B01302, doi:10.1029/2011JB008524. Houston H. 2015. Deep earthquakes.//Schubert G ed. Treatise on Geophysics. 2nd ed. Oxford:Elsevier, 329-354. Huang J L, Zhao D P. 2006. High-resolution mantle tomography of China and surrounding regions. J. Geophys. Res., 111(B9):B09305, doi:10.1029/2005jb004066. Isacks B, Molnar P. 1971. Distribution of stresses in the descending lithosphere from a global survey of focal-mechanism solutions of mantle earthquakes. Rev. Geophys., 9(1):103-174. Iwamori H. 2007. Transportation of H2O beneath the Japan arcs and its implications for global water circulation. Chem. Geol., 239(3-4):182-198. Jiang G M, Zhao D P. 2011. Metastable olivine wedge in the subducting Pacific slab and its relation to deep earthquakes. J. Asian Earth Sci., 42(6):1411-1423. Jiang G M, Zhao D P, Zhang G B. 2015. Detection of metastable olivine wedge in the western Pacific slab and its geodynamic implications. Phys. Earth Planet. Inter., 238:1-7. Jiang J Z, Chen Q F, Li J. 2019. Waveform detection and location of deep earthquakes in the subduction zone beneath Northeast China. Chin. J. Geophys. (in Chinese), 62(8):2930-2945, doi:10.6038/cjg2019M0210. Kawakatsu H, Watada S. 2007. Seismic evidence for deep-water transportation in the mantle. Science, 316(5830):1468-1471. Kawakatsu H, Kumar P, Takei Y, et al. 2009. Seismic evidence for sharp lithosphere-asthenosphere boundaries of oceanic plates. Science, 324(5926):499-502. Kawakatsu H, Yoshioka S. 2011. Metastable olivine wedge and deep dry cold slab beneath southwest Japan. Earth Planet. Sci. Lett., 303(1-2):1-10. Kennett B L N, Engdahl E R. 1991. Travel times for global earthquake location and phase identification. Geophys. J. Int., 105(2):429-465. Kimura G. 1986. Oblique subduction and collision:forearc tectonics of the Kuril arc. Geology, 14(5):404-407. Kita S, Okada T, Hasegawa A, et al. 2010. Existence of interplane earthquakes and neutral stress boundary between the upper and lower planes of the double seismic zone beneath Tohoku and Hokkaido, northeastern Japan. Tectonophysics, 496(1-4):68-82. Li J X, Zheng Y C, Thomsen L, et al. 2018. Deep earthquakes in subducting slabs hosted in highly anisotropic rock fabric. Nat. Geosci., 11(9):696-700. Li S Q, Chen Q F, Zhao L, et al. 2013. Anomalous focal mechanism of the May 2011 MW5.7 deep earthquake in northeastern China:regional waveform inversion and possible mechanism. Chin. J. Geophys. (in Chinese), 56(9):2959-2970, doi:10.6038/cjg20130910. Li T J, Chen Q F. 2019. Stress regime inversion in the Northwest Pacific subduction zone, the segment from northern Honshu, Japan to Northeast China. Chin. J. Geophys. (in Chinese), 62(2):520-533, doi:10.6038/cjg2019M0044. Li X Q, Yuan X H. 2003. Receiver functions in Northeast China-implications for slab penetration into the lower mantle in Northwest Pacific subduction zone. Earth Planet. Sci. Lett., 216(4):679-691. Lidaka T, Suetsugu D. 1992. Seismological evidence for metastable olivine inside a subducting slab. Nature, 356(6370):593-595. Ma J C, Tian Y, Liu C, et al. 2018. P-wave tomography of Northeast Asia:Constraints on the western Pacific plate subduction and mantle dynamics. Phys. Earth Planet. Inter., 274:105-126. McGuire J J, Wiens D A, Shore P J, et al. 1997. The March 9, 1994 (MW7.6), deep Tonga earthquake:rupture outside the seismically active slab. J. Geophys. Res., 102(B7):15163-15182. Obayashi M, Yoshimitsu J, Nolet G, et al. 2013. Finite frequency whole mantle P wave tomography:Improvement of subducted slab images. Geophys. Res. Lett., 40(21):5652-5657. Ozawa S, Nishimura T, Suito H, et al. 2011. Coseismic and postseismic slip of the 2011 magnitude-9 Tohoku-oki earthquake. Nature, 475(7356):373-376. Revenaugh J, Jordan T H. 1991. Mantle layering from ScS reverberations:2. The transition zone. J. Geophys. Res., 96(B12):19763-19780. Ringwood A E, Irifune T. 1988. Nature of the 650-km seismic discontinuity:implications for mantle dynamics and differentiation. Nature, 331(6152):131-136. Romanowicz B. 2018. A deep-earthquake puzzle resolved. Nat. Geosci., 11(9):622-624. Rosen J. 2016. The subduction zone observatory takes shape. Science, 353(6306):1347-1348. Saikia A, Frost D J, Rubie D C. 2008. Splitting of the 520-kilometer seismic discontinuity and chemical heterogeneity in the mantle. Science, 319(5869):1515-1518. Shao Z G, Zhan W, Zhang L P, et al. 2016. Analysis of the far-field co-seismic and post-seismic responses caused by the 2011 MW9.0 Tohoku-oki earthquake. Pure Appl. Geophys., 173:411-424. Shearer P M. 1990. Seismic imaging of upper-mantle structure with new evidence for a 520-km discontinuity. Nature, 344(6262):121-126. Shearer P M. 1996. Transition zone velocity gradients and the 520-km discontinuity. J. Geophys. Res., 101(B2):3053-3066. Shen Z C, Zhan Z W. 2020. Metastable olivine wedge beneath the Japan Sea imaged by seismic interferometry. Geophys. Res. Lett., 47(6):e2019GL085665, doi:10.1029/2019GL085665. Shestakov N V, Takahashi H, Ohzono M, et al. 2012. Analysis of the far-field crustal displacements caused by the 2011 Great Tohoku earthquake inferred from continuous GPS observations. Tectonophysics, 524-525:76-86. Sinogeikin S V, Bass J D, Katsura T. 2003. Single-crystal elasticity of ringwoodite to high pressures and high temperatures:implications for 520 km seismic discontinuity. Phys. Earth Planet. Inter., 136(1-2):41-66. Stein S A, Rubie D C. 1999. Deep earthquakes in real slabs. Science, 286(5441):909-910. Stern R J. 2002. Subduction zones. Rev. Geophys., 40(4):1012. Stern T A, Henrys S A, Okaya D, et al. 2015. A seismic reflection image for the base of a tectonic plate. Nature, 518(7537):85-88. Tao K, Grand S P, Niu F L. 2018. Seismic structure of the upper mantle beneath eastern Asia from full waveform seismic tomography. Geochem. Geophys. Geosyst., 19(8):2732-2763. Tian Y, Zhu H X, Zhao D P, et al. 2016. Mantle transition zone structure beneath the Changbai volcano:Insight into deep slab dehydration and hot upwelling near the 410-km discontinuity. J. Geophys. Res., 121(8):5794-5808. Uyeda S. 1992. The Japanese island arc and the subduction process. Pan Q X Trans. Offsh. Oil (in Chinese), (4):41-46. Valdez M N, Wu Z Q, Yu Y G, et al. 2012. Thermoelastic properties of ringwoodite (Fe<em>x, Mg1-x)2SiO4:its relationship to the 520 km seismic discontinuity. Earth Planet. Sci. Lett., 351-352:115-122. Wang L F, Liu J, Zhao J G, et al. 2013. Coseismic slip and post-seismic relaxation of the 2011 M9.0 Tohoku-oki earthquake and its influence on China mainland. Earthquake (in Chinese), 33(4):238-247. Wang M, Li Q, Wang F, et al. 2011. Far-field coseismic displacements associated with the 2011 Tohoku-oki earthquake in Japan observed by Global Positioning System. Chin. Sci. Bull., 56(23):2419-2424. Wang M, Shen Z K. 2020. Present-day crustal deformation of continental China derived from GPS and its tectonic implications. J. Geophys. Res. Solid Earth, 125(2):e2019JB018774, doi:10.1029/2019JB018774. Wang X, Chen Q F, Niu F L, et al. 2020. Distinct slab interfaces imaged within the mantle transition zone. Nat. Geosci., 13(12):822-827, doi:10.1038/s41561-020-00653-5. Wei W, Zhao D P, Xu J D, et al. 2015. P and S wave tomography and anisotropy in Northwest Pacific and East Asia:Constraints on stagnant slab and intraplate volcanism. J. Geophys. Res., 120(3):1642-1666. Wessel P, Smith W H F. 1998. New, improved version of Generic Mapping Tools released. Eos, Transactions American Geophysical Union, 79(47):579. Weston J, Engdahl E R, Harris J, et al. 2018. ISC-EHB:Reconstruction of a robust earthquake data set. Geophys. J. Int., 214(1):474-484. Wiens D A, Mcguire J J, Shore P J, et al. 1994. A deep earthquake aftershock sequence and implications for the rupture mechanism of deep earthquakes. Nature, 372(6506):540-543. Yang J F, Zhao L, Kaus B J P, et al. 2018. Slab-triggered wet upwellings produce large volumes of melt:Insights into the destruction of the North China Craton. Tectonophysics, 746:266-279. Yu H Y, Zhao L, Liu Y J, et al. 2016. Stress adjustment revealed by seismicity and earthquake focal mechanisms in Northeast China before and after the 2011 Tohoku-oki earthquake. Tectonophysics, 666:23-32. Zhan Z W, Kanamori H, Tsai V C, et al. 2014. Rupture complexity of the 1994 Bolivia and 2013 Sea of Okhotsk deep earthquakes. Earth Planet. Sci. Lett., 385:89-96. Zhan Z W. 2017. Gutenberg-Richter law for deep earthquakes revisited:A dual-mechanism hypothesis. Earth Planet. Sci. Lett., 461:1-7. Zhan Z W. 2020. Mechanisms and implications of deep earthquakes. Annu. Rev. Earth Planet. Sci., 48:147-174. Zhang K L, Wei D P. 2008. Progresses of the researches and the causing mechanisms on the double seismic zones within the subduction zones around the Pacific ocean. Progr. Geophys. (in Chinese), 23(1):31-39. Zhang K L, Wei D P. 2011. On the influence factors of double seismic zones. Chin. J. Geophys. (in Chinese), 54(11):2838-2850, doi:10.3969/j.issn.0001-5733.2011.11.014. Zhang R Q, Gao Z Y, Wu Q J, et al. 2016. Seismic images of the mantle transition zone beneath Northeast China and the Sino-Korean craton from P-wave receiver functions. Tectonophysics, 675:159-167. Zhao D P. 2017. Big mantle wedge, anisotropy, slabs and earthquakes beneath the Japan Sea. Phys. Earth Planet. Inter., 270:9-28. Zhao Q, Fu G Y, Wu W W, et al. 2018. Spatial-temporal evolution and corresponding mechanism of the far-field post-seismic displacements following the 2011 MW9.0 Tohoku earthquake. Geophys. J. Int., 214(3):1774-1782, doi:10.1093/gji/ggy226. Zheng Y F, Chen R X, Xu Z, et al. 2016. The transport of water in subduction zones. Sci. China Earth Sci., 59(4):651-682, doi:10.1007/s11430-015-5258-4. Zhu L P. 2000. Crustal structure across the San Andreas Fault, southern California from teleseismic converted waves. Earth Planet. Sci. Lett., 179(1):183-190. 附中文参考文献 干微, 金振民, 吴耀等. 2012. 深源地震机理的回顾:现状与问题. 地学前缘, 19(4):15-29. 郝明, 庄文泉. 2020. 2011年日本东北大地震对中国东部地壳形变场的影响. 大地测量与地球动力学, 40(6):555-558, 564. 姜金钟, 陈棋福, 李姣. 2019. 中国东北的深源地震波形匹配检测及定位. 地球物理学报, 62(8):2930-2945, doi:10.6038/cjg2019M0210. 李圣强, 陈棋福, 赵里等. 2013. 2011年5月中国东北MW5.7深震的非同寻常震源机制:区域波形反演与成因探讨. 地球物理学报, 56(9):2959-2970, doi:10.6038/cjg20130910. 李天觉, 陈棋福. 2019. 西北太平洋俯冲带日本本州至中国东北段应力场反演. 地球物理学报, 62(2):520-533, doi:10.6038/cjg2019M0044. Uyeda S. 1992. 日本岛弧和俯冲作用. 潘秋霞译. 海洋石油, (4):41-46. 王丽凤, 刘杰, 赵金贵等. 2013. 2011年日本9.0级地震的同震位错以及震后应力松弛过程对中国大陆的影响. 地震, 33(4):238-247. 王敏, 李强, 王凡等. 2011. 全球定位系统测定的2011年日本宫城MW9.0级地震远场同震位移. 科学通报, 56(20):1593-1596. 张克亮, 魏东平. 2008. 环太平洋俯冲带内双地震带及其成因机制研究进展. 地球物理学进展, 23(1):31-39, doi:10.3969/j.issn.0001-5733.2011.11.014. 张克亮, 魏东平. 2011. 双地震带的影响因素探讨. 地球物理学报, 54(11):2838-2850. 郑永飞, 陈仁旭, 徐峥等. 2016. 俯冲带中的水迁移. 中国科学:地球科学, 46(3):253-286.