DOU Hui,
WANG BaoShan,
XU YiHe et al
.2021.Analyzing the characteristics of the upper crustal anisotropy in Binchuan, Yunnan Province based on dense arrays and shear wave splitting Chinese Journal of Geophysics(in Chinese),64(12): 4292-4307,doi: 10.6038/cjg2021P0478
Analyzing the characteristics of the upper crustal anisotropy in Binchuan, Yunnan Province based on dense arrays and shear wave splitting
DOU Hui1, WANG BaoShan1,2, XU YiHe1,3,4, WANG WeiTao1, ZHANG Bo1
1. Institute of Geophysics, China Earthquake Administration, Beijing 100081, China 2. School of Earth and Space Science, University of Science and Technology of China, Hefei 230026, China 3. Department of Earth Sciences, University of Cambridge, Cambridge CB30EZ, United Kingdom 4. Geophysics Section, School of Cosmic Physics, Dublin Institute for Advanced Studies, Dublin D02Y006, Ireland
Abstract:Seismic anisotropy in the upper crust is mainly controlled by the aligned fractures due to regional stress and is also influenced by the regional structure units, like fault zones. However, rare studies are applied to systematically analyse the regional effects due to the limited station sampling. This study presented a shear wave splitting analysis based on a dense array (381 stations over two-months records, March 25-May 25, 2017) in Binchuan Basin, Yunnan Province, which provides sufficient spatial resolution to resolve the problem. Binchuan Basin is situated northwest of Yunnan Province, close to the city of Dali and the Red River fault. Subject to the strong regional stress caused by the eastern extrusion of the Tibetan Plateau, a set of faults formed in and around the basin, intersecting with each other. Some major faults are nearly perpendicular to the direction of the maximum horizontal principal stress. The misalignment between the strike of the faults and the regional stress provides a unique opportunity to differentiate the contribution of the two mechanisms. Additionally, frequent local earthquakes offer abundant data for shear wave splitting analysis. We manually picked 9819 S-wave arrivals and measured the shear wave splitting parameters using MFAST (Multiple Filter Automatic Splitting Technique), a shear wave splitting method that can automatically assess the quality of the measurements using cluster analysis and a series of quality control criteria. We obtained 831 high-quality shear wave splitting measurements that spread across 173 stations. Our results show that (1) the average polarization of the fast shear waves is NNW (N17.17°±4.64°W), which is consistent with the direction of the maximum horizontal principal stress that is obtained from analysis of GPS data and focal mechanism of earthquakes in a broader region (Yunnan or Sichuan-Yunnan); (2) in spatial, the polarization of the fast shear wave on stations nearby the faults shows patterns related to the faults' strike, indicating a strong regional influence from the faults; (3) the average delay time of the slow shear wave is 0.087±0.002 s, which corresponds to the amplitude of anisotropy of 2.4%, higher than the crustal average in Yunnan Province, suggesting a higher level of anisotropy in the Binchuan area. In summary, the anisotropy of the upper crust beneath the Binchuan area is mainly controlled by its regional stress field, with detailed features influenced by local faults, and the amplitude of anisotropy is relatively stronger than the average in Yunnan Province. The study shows the advantage of using dense arrays on systematically study the upper crustal anisotropy; namely, the high-spatial-resolution can help to analyze and differentiate different mechanisms of anisotropy in the upper crust.
Booth D C, Crampin S. 1985. Shear-wave polarizations on a curved wavefront at an isotropic free surface. Geophysical Journal International, 83(1):31-45, doi:10.1111/j.1365-246X.1985.tb05154.x. Bowman J R, Ando M. 1987. Shear-wave splitting in the upper-mantle wedge above the Tonga subduction zone. Geophysical Journal International, 88(1):25-41, doi:10.1111/j.1365-246X.1987.tb01367.x. Chang L J, Wang C Y, Ding Z F. 2006. A study on SKS splitting beneath the Yunnan region. Chinese Journal of Geophysics (in Chinese), 49(1):197-204. Chen S W, Wang B S, Tian X F, et al. 2016. Crustal structure from Yunxian-Ninglang wide-angle seismic reflection and refraction profile in northwestern Yunnan, China.Seismology and Geology (in Chinese), 38(1):91-106. Crampin S, Lovell J H. 1991. A decade of shear-wave splitting in the Earth's crust:what does it mean? What use can we make of it? And what should we do next?. Geophysical Journal International, 107(3):387-407, doi:10.1111/j.1365-246X.1991.tb01401.x. Crampin S. 1994. The fracture criticality of crustal rocks.Geophysical Journal International, 118(2):428-438. Crampin S, Chastin S. 2003. A review of shear wave splitting in the crack-critical crust.Geophysical Journal International, 155(1):221-240, doi:10.1046/j.1365-246X.2003.02037.x. Crampin S, Peacock S,Gao Y, et al. 2004. The scatter of time-delays in shear-wave splitting above small earthquakes. Geophysical Journal International, 156(1):39-44, doi:10.1111/j.1365-246X.2004.02040.x. Crampin S, Peacock S. 2005. A review of shear-wave splitting in the compliant crack-critical anisotropic Earth.Wave Motion, 41(1):59-77, doi:10.1016/j.wavemoti.2004.05.006. Crampin S,Gao Y. 2006. A review of techniques for measuring shear-wave splitting above small earthquakes. Physics of the Earth and Planetary Interiors, 159(1-2):1-14, doi:10.1016/j.pepi.2006.06.002. Cui X F, Xie F R, Zhang H Y. 2006. Recent tectonic stress field zoning in Sichuan-Yunnan region and its dynamic interest.Acta Seismologica Sinica (in Chinese), 28(5):451-461. Ding Z F, Wu Y, Wang H, et al. 2008. Variations of shear wave splitting in the 2008 Wenchuan earthquake region. Science in China Series D:Earth Sciences, 51(12):1712-1716. Gao Y, Zheng S H, Wang P D. 1996. Shear wave splitting study on small earthquake swarm of 1992 in Dongfang of Hainan, South China. Chinese Journal of Geophysics (in Chinese), 39(2):221-232. Gao Y, Crampin S. 2003. Temporal variations of shear-wave splitting in field and laboratory studies in China. Journal of Applied Geophysics, 54(3-4):279-287, doi:10.1016/j.jappgeo.2003.01.002. Gao Y, Liu X Q, Liang W, et al. 2004. Systematic analysis method of shear-wave splitting:SAM software system. Earthquake Research in China (in Chinese), 20(1):101-107, doi:10.3969/j.issn.1001-4683.2004.01.012. Gao Y, Hao P, Crampin S. 2006. SWAS:a shear-wave analysis system for semi-automatic measurement of shear-wave splitting above small earthquakes. Physics of the Earth and Planetary Interiors, 159(1-2):71-89, doi:10.1016/j.pepi.2006.06.003. Gao Y, Chen A G, Shi Y T, et al. 2019. Preliminary analysis of crustal shear-wave splitting in the Sanjiang lateral collision zone of the southeast margin of the Tibetan Plateau and its tectonic implications. Geophysical Prospecting, 67(9):2432-2449. Gao Y, Teng J W. 2005. Studies on seismic anisotropy in the crust and mantle on Chinese mainland. Progress in Geophysics (in Chinese), 20(1):180-185. Gao Y, Shi Y T, Wang Q. 2020. Seismic anisotropy in the southeastern margin of the Tibetan Plateau and its deep tectonic significances. Chinese Journal of Geophysics (in Chinese), 63(3):802-816, doi:10.6038/cjg2020O0033. Guo X Y, Chen X Z, Wang S W, et al. 2014. Focal mechanism of small and moderate earthquakes and tectonic stress field in Sichuan-Yunnan areas. China Earthquake Engineering Journal (in Chinese), 36(3):599-607, doi:10.3969/j.issn.1000-0844.2014.03.0599. Huang X J, Wu Z H, Huang X L, et al. 2018. Tectonic geomorphology constrains on quaternary activity and segmentation along Chenghai-Binchuan fault zone in Northwest Yunnan, China. Earth Science (in Chinese), 43(12):4651-4670. Hudson J A. 1981. Wave speeds and attenuation of elastic waves in material containing cracks.Geophysical Journal International, 64(1):133-150, doi:10.1111/j.1365-246X.1981.tb02662.x. Klein F W. 2002. User's guide to HYPOINVERSE-2000, a Fortran program to solve for earthquake locations and magnitudes. Open-file Report 02-171. Reston:US Geological Survey. Liu Y, Zhang H, Thurber C, et al. 2008. Shear wave anisotropy in the crust around the San Andreas fault near Parkfield:Spatial and temporal analysis. Geophysical Journal International, 172(3):957-970, doi:10.1111/j.1365-246X.2007.03618.x. Luo R J, Wu Z H, Huang X L, et al. 2015. The main active faults and the active tectonic system of Bin-chuan area, northwestern Yunnan. Geological Bulletin of China (in Chinese), 34(1):155-170, doi:10.3969/j.issn.1671-2552.2015.01.013. Peng Z G, Ben-Zion Y. 2004. Systematic analysis of crustal anisotropy along the Karadere-Düzce branch of the North Anatolian fault. Geophysical Journal International, 159(1):253-274, doi:10.1111/j.1365-246X.2004.02379.x. Savage M K. 1999. Seismic anisotropy and mantle deformation:What have we learned from shear wave splitting?. Reviews of Geophysics, 37(1):65-106, doi:10.1029/98RG02075. Savage M K, Wessel A, Teanby N A, et al. 2010. Automatic measurement of shear wave splitting and applications to time varying anisotropy at Mount Ruapehu volcano, New Zealand.Journal of Geophysical Research:Solid Earth, 115(B12):B12321, doi:10.1029/2010JB007722. Shi Y T,Gao Y, Wu J, et al. 2006. Seismic anisotropy of the crust in Yunnan, China:Polarizations of fast shear-waves. Acta Seismologica Sinica (in Chinese), 28(6):574-585. Shi Y T,Gao Y, Shen X Z, et al. 2020. Multiscale spatial distribution of crustal seismic anisotropy beneath the northeastern margin of the Tibetan plateau and tectonic implications of the Haiyuan fault. Tectonophysics, 774:228274, doi:10.1016/j.tecto.2019.228274. Silver P G, Chan W W. 1988. Implications for continental structure and evolution from seismic anisotropy. Nature, 335(6185):34-39. Silver P G, Chan W W. 1991. Shear wave splitting and subcontinental mantle deformation. Journal of Geophysical Research:Solid Earth, 96(B10):16429-16454. Sun C Q, Chen Y,Gao E G. 2011. The crustal anisotropy and its geodynamical significance of the strong basin-range interaction zone beneath the east margin of Qinghai-Tibet plateau. Chinese Journal of Geophysics (in Chinese), 54(5):1205-1214, doi:10.3969/j.issn.0001-5733.2011.05.009. Sun C Q, Lei J S, Li C, et al. 2013. Crustal anisotropy beneath the Yunnan region and dynamic implications.Chinese Journal of Geophysics (in Chinese), 56(12):4095-4105, doi:10.6038/cjg20131214. Tai L X,Gao Y, Liu G, et al. 2015. Crustal seismic anisotropy in the southeastern margin of Tibetan Plateau by ChinArray data:shear-wave splitting from temporary observations of the first phase. Chinese Journal of Geophysics (in Chinese), 58(11):4079-4091, doi:10.6038/cjg20151116. Teanby N A, Kendall J M,Van Der Baan M. 2004. Automation of shear-wave splitting measurements using cluster analysis. Bulletin of the Seismological Society of America, 94(2):453-463, doi:10.1785/0120030123. Wang B S, Yang W, Wang W T, et al. 2020. Diurnal and semidiurnal P- and S-wave velocity changes measured using an airgun source. Journal of Geophysical Research:Solid Earth, 125(1):e2019JB018218, doi:10.1029/2019JB018218. Wang C Y, Chang L J, Ding Z F, et al. 2014. Upper mantle anisotropy and crust-mantle deformation pattern beneath the Chinese mainland.Science China:Earth Sciences (in Chinese), 44(1):98-110, doi:10.1007/s11430-013-4675-5. Wang Q, Zhang P Z, Niu Z J, et al. 2002. Present-day crustal movement and tectonic deformation in China continent. Science in China Series D:Earth Sciences, 45(10):865-874, doi:10.3969/j.issn.1674-7240.2001.07.001. Wang Q, Gao Y, Shi Y T. 2015. Rayleigh wave azimuthal anisotropy on the southeastern front of the Tibetan Plateau from seismic ambient noise. Chinese Journal of Geophysics (in Chinese), 58(11):4068-4078, doi:10.6038/cjg20151115. Wessel P, Smith W H F, Scharroo R, et al. 2013. Generic mapping tools:improved version released. Eos, Transactions American Geophysical Union, 94(45):409-410, doi:10.1002/2013EO450001. Wu J,Gao Y, Cai J A, et al. 2007. Preliminary study on seismic anisotropy in the crust in southeast of Cathaysia Block. Chinese Journal of Geophysics (in Chinese), 50(6):1748-1756. Wu J P, Ming Y H, Wang C Y. 2004. Source mechanism of small-to-moderate earthquakes and tectonic stress field in Yunnan province.Acta Seismologica Sinica (in Chinese), 26(5):457-465. Xie F R, Liu G X, Liang H Q. 1994. Recent tectonic stress field in northwest Yunnan province and its adjacent areas.Seismology and Geology (in Chinese), 16(4):329-338. Xie Z X, Wu Q J, Zhang R Q. 2017. Crustal anisotropy beneath northeastern margin of the Tibetan Plateau and its dynamic implications.Chinese Journal of Geophysics (in Chinese), 60(6):2315-2325, doi:10.6038/cjg20170623. Xing Q Y, Ma J. 1985. Mechanic analysis of the seismotectonic conditions of Dali area, Yunnan Province. Journal of Seismological Research (in Chinese), 8(2):189-200. Xu Y H, Wang B S, Wang W T, et al. 2018. Multiple seismological evidences of basin effects revealed by Array of Binchuan (ABC), northwest Yunnan, China. Earthquake Science, 31(5-6):281-290, doi:10.29382/eqs-2018-0281-8. Yang G H, Han Y P, Yang B. 2009. Discussion about the evolvement characteristics and the mechanism of the crustal horizontal movement and deformation field in Sichuan-Yunnan Area.Journal of Seismological Research (in Chinese), 32(3):275-282, doi:0.3969/j.issn.1000-0666.2009.03.011. Yang Y, Chang L J. 2018. Variations of shear wave splitting in the source region of the 2017 Jiuzhaigou MS7.0 earthquake. Chinese Journal of Geophysics (in Chinese), 61(5):2088-2098, doi:10.6038/cjg2018M0174. Yu W X, Zhang J G, Zhou G Q, et al. 2005. Surface rupture of the 2001 Yongsheng M6 Earthquake and Chenghai Fault.Journal of Seismological Research (in Chinese), 28(2):125-128. Zeng R S, Zhu J S, Zhou B, et al. 1992. 3-D seismic wave velocity structure in Tibetan Plateau and its eastern neighboring regions and the continental collision model.Acta Seismologica Sinica (in Chinese), 14(S1):523-533. Zhai Q S. 2017. Study on the velocity structure and its change in Dali Region of Yunnan Province based on passive source and active source methods[Master's thesis] (in Chinese). Hefei:University of Science and Technology of China. Zhang H,Gao Y, Shi Y T, et al. 2012. Tectonic stress analysis based on the crustal seismic anisotropy in the northeastern margin of Tibetan plateau. Chinese Journal of Geophysics (in Chinese), 55(1):95-104, doi:10.6038/j.issn.0001-5733.2012.01.009. Zhang X, Wang Y H. 2009. Crustal and upper mantle velocity structure in Yunnan, Southwest China. Tectonophysics, 471(3-4):171-185, doi:10.1016/j.tecto.2009.02.009. Zhang Y,Gao Y. 2017. The characteristics of crustal shear-wave splitting in North-South seismic zone revealed by near field recordings of two observation periods of ChinArray. Chinese Journal of Geophysics (in Chinese), 60(6):2181-2199, doi:10.6038/cjg20170613. Zhang Y P, Wang B S, Lin G Q, et al. 2020. Upper crustal velocity structure of Binchuan, Yunnan revealed by dense array local seismic tomography.Chinese Journal of Geophysics (in Chinese), 63(9):3292-3306, doi:10.6038/cjg2020N0455. Zhang Z J, Bai Z M, Wang C Y, et al. 2005. The crustal structure under Sanjiang and its dynamic implications:revealed by seismic reflection/refraction profile between Zhefang and Binchuan, Yunnan.Science in China Series D:Earth Sciences, 48(9):1329-1336. Zhao B,Gao Y, Huang Z B, et al. 2013. Double difference relocation, focal mechanism and stress inversion of Lushan MS7.0 earthquake sequence. Chinese Journal of Geophysics (in Chinese), 56(10):3385-3395, doi:10.6038/cjg20131014. Zheng T, Ding Z F, Chang L J, et al. 2018. Characteristics of S-wave splitting in upper crust of the Nanba region in the northern Longmenshan fault.Chinese Journal of Geophysics (in Chinese), 61(5):2054-2065, doi:10.6038/cjg2018L0610. Zhou Q, Guo S M, Xiang H F. 2004. Principle and method of delineation of potential seismic sources in northeastern Yunnan province. Seismology and Geology (in Chinese), 26(4):761-771. 附中文参考文献 常利军, 王椿镛, 丁志峰. 2006. 云南地区SKS波分裂研究. 地球物理学报, 49(1):197-204. 陈思文, 王宝善, 田晓峰等. 2016. 滇西北地区云县-宁蒗宽角反射/折射剖面结果. 地震地质, 38(1):91-106. 崔效锋, 谢富仁, 张红艳. 2006. 川滇地区现代构造应力场分区及动力学意义. 地震学报, 28(5):451-461. 丁志峰, 武岩, 王辉等. 2008. 2008年汶川地震震源区横波分裂的变化特征. 中国科学 D辑:地球科学, 38(12):1600-1604. 高原, 郑斯华, 王培德. 1996. 海南省东方地区1992年小震群剪切波分裂研究. 地球物理学报, 39(2):221-232. 高原, 刘希强, 梁维等. 2004. 剪切波分裂系统分析方法(SAM)软件系统. 中国地震, 20(1):101-107, doi:10.3969/j.issn.1001-4683.2004.01.012. 高原, 滕吉文. 2005. 中国大陆地壳与上地幔地震各向异性研究. 地球物理学进展, 20(1):180-185. 高原, 石玉涛, 王琼. 2020. 青藏高原东南缘地震各向异性及其深部构造意义. 地球物理学报, 63(3):802-816, doi:10.6038/cjg2020O0033. 郭祥云, 陈学忠, 王生文等. 2014. 川滇地区中小地震震源机制解及构造应力场的研究. 地震工程学报, 36(3):599-607, doi:10.3969/j.issn.1000-0844.2014.03.0599. 黄小巾, 吴中海, 黄小龙等. 2018. 滇西北程海-宾川断裂带第四纪分段活动性的构造地貌表现与限定. 地球科学, 43(12):4651-4670. 罗睿洁, 吴中海, 黄小龙等. 2015. 滇西北宾川地区主要活动断裂及其活动构造体系. 地质通报, 34(1):155-170, doi:10.3969/j.issn.1671-2552.2015.01.013. 石玉涛, 高原, 吴晶等. 2006. 云南地区地壳介质各向异性——快剪切波偏振特性. 地震学报, 28(6):574-585. 孙长青, 陈赟, 高尔根. 2011. 青藏高原东缘强烈盆山相互作用区的地壳各向异性特征及其动力学意义探讨. 地球物理学报, 54(5):1205-1214, doi:10.3969/j.issn.0001-5733.2011.05.009. 孙长青, 雷建设, 李聪等. 2013. 云南地区地壳各向异性及其动力学意义. 地球物理学报, 56(12):4095-4105, doi:10.6038/cjg20131214. 太龄雪, 高原, 刘庚等. 2015. 利用中国地震科学台阵研究青藏高原东南缘地壳各向异性:第一期观测资料的剪切波分裂特征. 地球物理学报, 58(11):4079-4091, doi:10.6038/cjg20151116. 王椿镛, 常利军, 丁志峰等. 2014. 中国大陆上地幔各向异性和壳幔变形模式. 中国科学:地球科学, 44(1):98-110, doi:10.1007/s11430-013-4675-5. 王琪, 张培震, 牛之俊等. 2001. 中国大陆现今地壳运动和构造变形. 中国科学 D辑, 31(7):529-536, doi:10.3969/j.issn.1674-7240.2001.07.001. 王琼, 高原, 石玉涛. 2015. 青藏高原东南缘基于背景噪声的Rayleigh面波方位各向异性研究. 地球物理学报, 58(11):4068-4078, doi:10.6038/cjg20151115. 吴建平, 明跃红, 王椿镛. 2004. 云南地区中小地震震源机制及构造应力场研究. 地震学报, 26(5):457-465. 吴晶, 高原, 蔡晋安等. 2007. 华夏地块东南部地壳地震各向异性特征初步研究. 地球物理学报, 50(6):1748-1756. 谢富仁, 刘光勋, 梁海庆. 1994. 滇西北及邻区现代构造应力场. 地震地质, 16(4):329-338. 谢振新, 吴庆举, 张瑞青. 2017. 青藏高原东北缘地壳各向异性及其动力学意义. 地球物理学报, 60(6):2315-2325, doi:10.6038/cjg20170623. 邢全友, 马瑾. 1985. 云南大理地区地震构造条件的力学分析. 地震研究, 8(2):189-200. 杨国华, 韩月萍, 杨博. 2009. 川滇地区地壳水平运动与变形场的演化特征及其机制讨论. 地震研究, 32(3):275-282, doi:0.3969/j.issn.1000-0666.2009.03.011. 杨溢, 常利军. 2018. 2017年九寨沟MS7.0地震震源区横波分裂变化特征. 地球物理学报, 61(5):2088-2098, doi:10.6038/cjg2018M0174. 俞维贤, 张建国, 周光全等. 2005. 2001年永胜6级地震的地表破裂与程海断裂. 地震研究, 28(2):125-128. 曾融生, 朱介寿, 周兵等. 1992. 青藏高原及其东部邻区的三维地震波速度结构与大陆碰撞模型. 地震学报, 14(S1):523-533. 翟秋实. 2017. 基于被动源和主动源方法的云南大理地区速度结构及其变化研究[硕士论文]. 合肥:中国科学技术大学. 张辉, 高原, 石玉涛等. 2012. 基于地壳介质各向异性分析青藏高原东北缘构造应力特征. 地球物理学报, 55(1):95-104, doi:10.6038/j.issn.0001-5733.2012.01.009. 张艺, 高原. 2017. 中国地震科学台阵两期观测资料近场记录揭示的南北地震带地壳剪切波分裂特征. 地球物理学报, 60(6):2181-2199, doi:10.6038/cjg20170613. 张云鹏, 王宝善, 林国庆等. 2020. 利用密集台阵近震层析成像研究云南宾川上地壳速度结构. 地球物理学报, 63(9):3292-3306, doi:10.6038/cjg2020N0455. 张中杰, 白志明, 王椿镛等. 2005. 三江地区地壳结构及动力学意义:云南遮放-宾川地震反射/折射剖面的启示. 中国科学 D辑:地球科学, 35(4):314-319, doi:10.3969/j.issn.1674-7240.2005.04.003. 赵博, 高原, 黄志斌等. 2013. 四川芦山MS7.0地震余震序列双差定位、震源机制及应力场反演. 地球物理学报, 56(10):3385-3395, doi:10.6038/cjg20131014. 郑拓, 丁志峰, 常利军等. 2018. 龙门山断裂带北段南坝地区上地壳S波分裂特征. 地球物理学报, 61(5):2054-2065, doi:10.6038/cjg2018L0610. 周庆, 虢顺民, 向宏发. 2004. 滇西北地区潜在震源区的划分原则和方法. 地震地质, 26(4):761-771.