LEI YuHang,
YIN Fu,
HONG HeTing et al
.2021.Shallow structure imaging using higher-mode Rayleigh waves based on F-J transform in DAS observation Chinese Journal of Geophysics(in Chinese),64(12): 4280-4291,doi: 10.6038/cjg2021P0438
基于MF-J变换的DAS观测高阶面波提取和浅地表结构成像
雷宇航, 尹扶, 洪鹤庭, 李娱兰, 王宝善
中国科学技术大学地球和空间科学学院, 合肥 230026
Shallow structure imaging using higher-mode Rayleigh waves based on F-J transform in DAS observation
LEI YuHang, YIN Fu, HONG HeTing, LI YuLan, WANG BaoShan
School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
Abstract:Distributed Acoustic Sensing (DAS) can transform existing urban standard telecommunication cables into dense broadband seismic observation systems. The use of urban communication optical cables for active/passive surface wave imaging provides a new way for urban near-surface imaging and underground space detection, and has broad application prospects. A large number of recent studies have shown that making full use of higher-mode surface wave information can significantly improve the near-surface imaging effect of surface wave. In order to explore the feasibility of extraction and utilization of higher-mode surface wave in DAS records, in this paper, we derive the MF-J transformation formula suitable for extracting multi-mode surface wave dispersion curves in DAS seismic records, and successfully apply them to the Baijia Tuan DAS experiment. Based on the active source observation data, the multi-mode dispersion curve was extracted and inverted to construct a high-resolution, high-precision shear wave velocity structure profile in the study area. The research results show that the MF-J method can effectively extract the high-mode dispersion curves from the DAS active source record, also could avoid the cross artifact in the traditional F-J method. The velocity structure resolution and detection depth based on the inversion of the high-mode dispersion curves are significantly better than the inversion using only the fundamental mode. The research results of this paper reveal the possibility of using urban telecommunication cables to realize low-cost and high-resolution underground structure detection.
Arai H, Tokimatsu K. 2004. S-wave velocity profiling by inversion of microtremor H/V spectrum. Bulletin of the Seismological Society of America, 94(1):53-63. Blum J A, Nooner S L, Zumberge M A. 2008. Recording Earth strain with optical fibers. IEEE Sensors Journal, 8(7):1152-1160. Brocher T M. 2005. Empirical relations between elastic wavespeeds and density in the Earth's crust. Bulletin of the Seismological Society of America, 95(6):2081-2092. Brocher T M. 2008. Key elements of regional seismic velocity models for long period ground motion simulations. Journal of Seismology, 12(2):217-221. Forbriger T. 2003. Inversion of shallow-seismic wavefields:I. Wavefield transformation. Geophysical Journal International, 153(3):719-734. Gardner G H F, Gardner L W, Gregory A R. 1974. Formation velocity and density-the diagnostic basics for stratigraphic traps. Geophysics, 39(6):770-780. Hu S Q, Luo S, Yao H J. 2020. The Frequency-Bessel Spectrograms of multicomponent cross-correlation functions from seismic ambient noise. Journal of Geophysical Research:Solid Earth, 125(8):e2020JB019630, doi:10.1029/2020JB019630. Ikeda T, Matsuoka T, Tsuji T, et al. 2015. Characteristics of the horizontal component of Rayleigh waves in multimode analysis of surface waves. Geophysics, 80(1):EN1-EN11. Lei Y H, Shen H Y, Li X X, et al. 2019. Inversion of Rayleigh wave dispersion curves via adaptive GA and nested DLS. Geophysical Journal International, 218(1):547-559. Li X Y, Chen X F, Yang Z T, et al. 2020. Application of high-order surface waves in shallow exploration:An example of the Suzhou River, Shanghai. Chinese Journal of Geophysics (in Chinese), 63(1):247-255, doi:10.6038/cjg2020N0202. Li Z B, Chen X F. 2020. An effective method to extract overtones of surface wave from array seismic records of earthquake events. Journal of Geophysical Research:Solid Earth, 125(3):e2019JB018511, doi:10.1029/2019JB018511. Lin R B, Zeng X F, Song Z H, et al. 2020. Distributed acoustic sensing for imaging shallow structure II:Ambient noise tomography. Chinese Journal of Geophysics (in Chinese), 63(4):1622-1629, doi:10.6038/cjg2020N0272. Lindsey N J, Dawe T C, Ajo-Franklin J B. 2019. Illuminating seafloor faults and ocean dynamics with dark fiber distributed acoustic sensing. Science, 366(6469):1103-1107. Lindsey N J, Rademacher H, Ajo-Franklin J B. 2020. On the broadband instrument response of fiber-optic DAS arrays. Journal of Geophysical Research:Solid Earth, 125(2):e2019JB018145, doi:10.1029/2019JB018145. Lior I, Sladen A, Rivet D, et al. 2021. On the detection capabilities of underwater distributed acoustic sensing. Journal of Geophysical Research:Solid Earth, 126(3):e2020JB020925, doi:10.1029/2020JB020925. Luo B, Trainor-Guitton W, Bozdaǧ E, et al. 2020. Horizontally orthogonal distributed acoustic sensing array for earthquake- and ambient-noise-based multichannel analysis of surface waves. Geophysical Journal International, 222(3):2147-2161. Luo Y H, Xia J H, Liu J P, et al. 2008. Joint inversion of fundamental and higher mode Rayleigh waves. Chinese Journal of Geophysics (in Chinese), 51(1):242-249. Mateeva A, Lopez J, Potters H, et al. 2014. Distributed acoustic sensing for reservoir monitoring with vertical seismic profiling. Geophysical Prospecting, 62(4):679-692. Mei D, Neukum C, Hui H, et al. 2015. Developing an adequate approach to model the geotechnical parameters for reducing the ventures of underground city development. Engineering Geology for Society and Territory, 5:639-642, doi:10.1007/978-3-319-09048-1_124. Mi B B, Xia J H, Shen C, et al. 2018. Dispersion energy analysis of Rayleigh and Love waves in the presence of low-velocity layers in near-surface seismic surveys. Surveys in Geophysics, 39(2):271-288. Nayak A, Ajo-Franklin J. 2021. Distributed acoustic sensing using dark fiber for array detection of regional earthquakes. Seismological Research Letters, 92(4):2441-2452. Paitz P, Edme P, Gräff D, et al. 2021. Empirical Investigations of the Instrument Response for Distributed Acoustic Sensing (DAS) across 17 Octaves. Bulletin of the Seismological Society of America, 111(1):1-10. Pan L, Chen X F, Wang J N, et al. 2019. Sensitivity analysis of dispersion curves of Rayleigh waves with fundamental and higher modes. Geophysical Journal International, 216(2):1276-1303. Serdyukov A S, Yablokov A V, Duchkov A A, et al. 2019. Slant f-k transform of multichannel seismic surface wave data. Geophysics, 84(1):A19-A24. Shen Y H, Liang Z Z, Xu L H, et al. 1992. Practical Mathematics Manual (in Chinese). Beijing:Science Press. Sladen A, Rivet D, Ampuero J P, et al. 2019. Distributed sensing of earthquakes and ocean-solid Earth interactions on seafloor telecom cables. Nature Communications, 10(1):5777, doi:10.1038/s41467-019-13793-z. Song Z H, Zeng X F, Xu S H, et al. 2020. Distributed Acoustic Sensing for imaging shallow structure I:active source survey. Chinese Journal of Geophysics (in Chinese), 63(2):532-540, doi:10.6038/cjg2020N0184. Spica Z J,Perton M, Martin E R, et al. 2020. Urban seismic site characterization by fiber-optic seismology. Journal of Geophysical Research:Solid Earth, 125(3):e2019JB018656, doi:10.1029/2019JB018656. Stell W, Marshak D, Yamada T, et al. 1980. Peptides are in the eye of the beholder. Trends in Neurosciences, 3(12):292-295. Trnkoczy A. 2009. Understanding and parameter setting of STA/LTA trigger algorithm.//New Manual of Seismological Observatory Practice. Deutsches GeoForschungsZentrum GFZ, Potsdam, Germany, 965-984. Wang B S, Zeng X F, Song Z H, et al.2021. Seismic observation and subsurface imaging using an urban telecommunication optic-fiber cable. Chinese Science Bulletin (in Chinese), 66(20):2590-2595. Wang J N, Wu G X, Chen X F. 2019. Frequency-Bessel transform method for effective imaging of higher-mode Rayleigh dispersion curves from ambient seismic noise data. Journal of Geophysical Research:Solid Earth, 124(4):3708-3723. Wu G X, Pan L, Wang J N, et al. 2020. Shear velocity inversion using multimodal dispersion curves from ambient seismic noise data of USArray transportable array. Journal of Geophysical Research:Solid Earth, 125(1):e2019JB018213, doi:10.1029/2019JB018213. Wu H L, Chen X F, Pan L. 2019. S-wave velocity imaging of theKanto basin in Japan using the frequency-Bessel transformation method. Chinese Journal of Geophysics (in Chinese), 62(9):3400-3407, doi:10.6038/cjg2019N0205. Xi C Q, Xia J H, Mi B B, et al. 2021. Modified frequency-Bessel transform method for dispersion imaging of Rayleigh waves from ambient seismic noise. Geophysical Journal International, 225(2):1271-1280. Xia J H, Miller R D, Park C B. 1999. Estimation of near-surface shear-wave velocity by inversion of Rayleigh waves. Geophysics, 64(3):691-700. Xia J H, Miller R D, Park C B, et al. 2003. Inversion of high frequency surface waves with fundamental and higher modes. Journal of Applied Geophysics, 52(1):45-57. Yang W C, Tian G, Xia J H, et al. 2019. The prospect of exploitation and utilization of urban underground space in hilly areas of South China. Geology in China (in Chinese), 46(3):447-454. Yang Z T, Chen X F, Pan L, et al. 2019. Multi-channel analysis of Rayleigh waves based on the Vector Wavenumber Transformation Method (VWTM). Chinese Journal of Geophysics (in Chinese), 62(1):298-305, doi:10.6038/cjg2019M0641. Yu C Q, Zhan Z W, Lindsey N J, et al. 2019. The potential of DAS in teleseismic studies:insights from the Goldstone experiment. Geophysical Research Letters, 46(3):1320-1328. 附中文参考文献 李雪燕, 陈晓非, 杨振涛等. 2020. 城市微动高阶面波在浅层勘探中的应用:以苏州河地区为例. 地球物理学报, 63(1):247-255, doi:10.6038/cjg2020N0202. 林融冰, 曾祥方, 宋政宏等. 2020. 分布式光纤声波传感系统在近地表成像中的应用Ⅱ:背景噪声成像. 地球物理学报, 63(4):1622-1629, doi:10.6038/cjg2020N0272. 罗银河, 夏江海, 刘江平等. 2008. 基阶与高阶瑞利波联合反演研究. 地球物理学报, 51(1):242-249. 沈永欢, 梁在中, 许履瑚等. 1992. 实用数学手册. 北京:科学出版社. 宋政宏, 曾祥方, 徐善辉等. 2020. 分布式光纤声波传感系统在近地表成像中的应用Ⅰ:主动源高频面波. 地球物理学报, 63(2):532-540, doi:10.6038/cjg2020N0184. 王宝善, 曾祥方, 宋政宏等. 2021. 利用城市通信光缆进行地震观测和地下结构探测. 科学通报, 66(20):2590-2595. 吴华礼, 陈晓非, 潘磊. 2019. 基于频率-贝塞尔变换法的关东盆地S波速度成像. 地球物理学报, 62(9):3400-3407, doi:10.6038/cjg2019N0205. 杨文采, 田钢, 夏江海等. 2019. 华南丘陵地区城市地下空间开发利用前景. 中国地质, 46(3):447-454. 杨振涛, 陈晓非, 潘磊等. 2019. 基于矢量波数变换法(VWTM)的多道Rayleigh波分析方法. 地球物理学报, 62(1):298-305, doi:10.6038/cjg2019M0641.