ZHONG ShiJie
.2021.Mantle dynamics on large spatial and temporal scales Chinese Journal of Geophysics(in Chinese),64(10): 3478-3502,doi: 10.6038/cjg2021P0530
大尺度地幔动力学研究的现状和展望
钟时杰
美国科罗拉多大学物理系, 科罗拉多州, 博尔德市
Mantle dynamics on large spatial and temporal scales
ZHONG ShiJie
Department of Physics, University of Colorado, Boulder, Colorado, USA
Abstract:This article provides a review on the studies of large temporal and spatial scale dynamics of the Earth's mantle. The review focuses on relevant observations and their geodynamic interpretations and implications. These observations include present-day Earth's plate tectonics, long- and intermediate-wavelength geoid and gravity anomalies, and mantle seismic structures, as well as important tectonism and magmatism that have happened in the last one billion years, associated with the formation and breakup of supercontinents Pangea and Rodinia. Much of the discussion is centered on how these observations have motivated geodynamic studies and modeling that seek to understand and interpret the observations. This review covers four topics. The first is on the primary characteristics of mantle seismic structure and their dynamic origin. The present-day Earth's mantle is predominated by long-wavelength structures (i.e., degree-2 in the lower mantle and LLSVPs near the core-mantle boundary) and linear structures in subduction zones, both of which can be interpreted as a result of mantle convection modulated by surface plate motion history in the last 100 million years. The second is on the long- and intermediate-wavelength geoid and gravity anomalies and their dynamic interpretation. The geoid anomalies are explained by mantle flow that is driven by buoyancy associated with the mantle structure. Such studies indicate that the upper mantle is at least one magnitude weaker than the lower mantle and strongly suggest the existence of a weak asthenosphere. Third, the cyclic process of formation and breakup of supercontinents Pangea and Rodinia is surface manifestation of time-dependent mantle convection. During supercontinent formation and its early stage, mantle structure is predominately degree-1 with cold downwellings in one hemisphere and hot upwellings in the other hemisphere. However, the degree-1 structure starts to transition to degree-2 mantle structure with two major antipodal upwelling systems (e.g., the present-day Earth) in the late stage of a supercontinent, leading to supercontinent breakup. Abundant observational and dynamic evidence support the 1-2-1 model for supercontinent cycle and mantle structure evolution. The fourth is on the origin of plate tectonics and long-term thermal evolution of the Earth which is a fundamentally important but also controversial topic in the studies of earth science.
Allègre C J, Hofmann A, O'Nions K. 1996. The Argon constraints on mantle structure. Geophys. Res. Lett., 23(24):3555-3557, doi:10.1029/96GL03373. Anderson D L. 1982. Hotspots, polar wander, Mesozoic convection and the geoid. Nature, 297(5865):391-393, doi:10.1038/297391a0. Arnould M, Coltice N, Flament N, et al. 2020. Plate tectonics and mantle controls on plume dynamics. Earth Planet. Sci. Lett., 547:116439, doi:10.1016/j.epsl.2020.116439. Ballmer M D, Houser C, Hernlund J W, et al. 2017. Persistence of strong silica-enriched domains in the Earth's lower mantle. Nature Geoscience, 10(3):236-240. Becker T W, Boschi L. 2002. A comparison of tomographic and geodynamic mantle models. Geochem. Geophys. Geosyst., 3:1003, doi:10.1029/2001GC000168. Becker T W. 2006. On the effect of temperature and strain-rate dependent viscosity on global mantle flow, net rotation, and plate-driving forces. Geophys. J. Int., 167(2):943-957, doi:10.1111/j.1365-246X.2006.03172.x. Bellas A, Zhong S J. 2021. Seismic strain rate and flexure at the Hawaiian Islands constrain the fictional coefficient. Geochem. Geophys. Geosyst., 22(4):e2020GC009547, doi:10.1029/2020GC009547. Belousova E A, Kostitsyn Y A, Griffin W L, et al. 2010. The growth of the continental crust:Constraints from zircon Hf isotope data. Lithos, 119(3-4):457-466. Bercovici D, Schubert G, Glatzmaier G A. 1989. Three-dimensional spherical models of convection in the Earth's mantle. Science, 244(4907):950-955. Bercovici D. 2003. The generation of plate tectonics from mantle convection. Earth Planet. Sci. Lett., 205(3-4):107-121, doi:10.1016/S0012-821X(02)01009-9. Bercovici D, Ricard Y. 2012. Mechanisms for the generation of plate tectonics by two-phase grain-damage and pinning. Phys. Earth Planet. Inter., 202-203:27-55, doi:10.1016/j.pepi.2012.05.003. Bercovici D, Ricard Y. 2014. Plate tectonics, damage and inheritance. Nature, 508(7497):513-516, doi:10.1038/nature13072. Bono R K, Tarduno J A, Bunge H P. 2019. Hotspot motion caused the Hawaiian-Emperor Bend and LLSVPs are not fixed. Nat. Commun., 10:3370, doi:10.1038/s41467-019-11314-6. Bower D J, Gurnis M, Seton M. 2013. Lower mantle structure from paleogeographically constrained dynamic Earth models. Geochem. Geophys. Geosyst., 14(1):44-63, doi:10.1029/2012GC004267. Boyet M, Carlson R W. 2005. Nd-142 evidence for early (>4.53 Ga) global differentiation of the silicate Earth. Science, 309(5734):576-581, doi:10.1126/science.1113634. Bull A L, McNamara A K, Ritsema J. 2009. Synthetic tomography of plume clusters and thermochemical piles. Earth Planet. Sci. Lett., 278(3-4):152-162. Bunge H P, Richards M A, Baumgardner J R. 1996. Effect of depth-dependent viscosity on the planform of mantle convection. Nature, 379:436-438, doi:10.1038/379436a0. Bunge H P, Richards M A, Lithgow-Bertelloni C, et al. 1998. Time scales and heterogeneous structure in geodynamic earth models. Science, 280(5360):91-95, doi:10.1126/science.280.5360.91. Bunge H P, Grand S P. 2000. Mesozoic plate-motion history below the Northeast Pacific Ocean from seismic images of the subducted Farallon slab. Nature, 405(6784):337-340, doi:10.1038/35012586. Byerlee J. 1978. Friction of rocks. Pure Appl. Geophys., 116(4-5):615-626. Capitanio F A, Morra G, Goes S. 2007. Dynamic models of downgoing plate-buoyancy driven subduction:subduction motions and energy dissipation. Earth Planet. Sci. Lett., 262(1-2):284-297. Capitanio F A, Morra G, Goes S. 2009. Dynamics of plate bending at the trench and slab-plate coupling. Geochem. Geophys. Geosyst., 10(4):Q04002, doi:10.1029/2008GC002348. Carlson R W, Garnero E, Harrison T M, et al. 2014. How did early Earth become our modern world?. Annu. Rev. Earth Planet. Sci., 42(1):151-178, doi:10.1146/annurev-earth-060313-055016. Chase C G. 1979. Subduction, the geoid, and lower mantle convection. Nature, 282(5738):464-468, doi:10.1038/282464a0. Christensen U R. 1984. Heat transport by variable viscosity convection and implications for the Earth's thermal evolution. Phys. Earth Planet. Inter., 35(4):264-282. Christensen U R. 1985. Thermal evolution models for the earth. J. Geophys. Res.:Solid Earth, 90(B4):2995-3007. Christensen U R. 1996. The influence of trench migration on slab penetration into the lower mantle. Earth Planet. Sci. Lett., 140(1-4):27-39. Connerney J E P, Acuña M H, Wasilewski P J, et al. 1999. Magnetic lineations in the ancient crust of Mars. Science, 284(5415):794-798, doi:10.1126/science.284.5415.794. Conrad C P, Hager B H. 1999a. Effects of plate bending and fault strength at subduction zones on plate dynamics. J. Geophys. Res.:Solid Earth, 104(B8):17551-17571. Conrad C P, Hager B H. 1999b. The thermal evolution of an earth with strong subduction zones. Geophys. Res. Lett., 26(19):3041-3044. Cottaar S, Romanowicz B. 2013. Observations of changing anisotropy across the southern margin of the African LLSVP. Geophys. J. Int., 195(2):1184-1195, doi:10.1093/gji/ggt285. Courtillot V, Davaille A, Besse J, et al. 2003. Three distinct types of hotspots in the Earth's mantle. Earth Planet. Sci. Lett., 205(3-4):295-308, doi:10.1016/S0012-821X(02)01048-8. Dang Z, Zhang N, Li Z X, et al. 2020. Weak orogenic lithosphere guides the pattern of plume-triggered supercontinent break-up. Commun. Earth Environ., 1(1):51, doi:10.1038/s43247-020-00052-z. Davaille A. 1999. Simultaneous generation of hotspots and superswells by convection in a heterogeneous planetary mantle. Nature, 402(6763):756-760, doi:10.1038/45461. Davaille A, Romanowicz B. 2020. Deflating the LLSVPs:bundles of mantle thermochemical plumes, rather than thick "stagnant" piles. Tectonics, 39(10):e2020TC006265, doi:10.1029/2020TC006265. Davies D R, Goes S, Davies J H, et al. 2012. Reconciling dynamic and seismic models of Earth's lower mantle:The dominant role of thermal heterogeneity. Earth Planet. Sci. Lett., 353-354:253-269, doi:10.1016/j.epsl.2012.08.016. Davies G F. 1993. Cooling the core and mantle by plume and plate flows. Geophys. J. Int., 115(1):132-146. Davies G F. 1999. Dynamic Earth:Plates, Plumes and Mantle Convection. Cambridge:Cambridge University Press. Davies G F. 2009. Effect of plate bending on the Urey ratio and the thermal evolution of the mantle. Earth Planet. Sci. Lett., 287(3-4):513-518, doi:10.1016/j.epsl.2009.08.038. Dhuime B, Wuestefeld A, Hawkesworth C J. 2015. Emergence of modern continental crust about 3 billion years ago. Nature Geoscience, 8(7):552-555. Doucet L S, Li Z X, El Dien H G, et al. 2020. Distinct formation history for deep-mantle domains reflected in geochemical differences. Nature Geoscience, 13(7):511-515, doi:10.1038/s41561-020-0599-9. Dziewonski A M, Hager B H, O'Connell R J. 1977. Large-scale heterogeneities in the lower mantle. J. Geophys. Res., 82(2):239-255, doi:10.1029/JB082i002p00239. Dziewonski A M. 1984. Mapping the lower mantle:Determination of lateral heterogeneity in P velocity up to degree and order-6. J. Geophys. Res.:Solid Earth, 89(B7):5929-5952. Dziewonski A M, Lekić V, Romanowicz B A. 2010. Mantle anchor structure:An argument for bottom up tectonics. Earth Planet. Sci. Lett., 299(1-2):69-79, doi:10.1016/J.epsl.2010.08013. England P. 2018. On shear stresses, temperatures, and the maximum magnitudes of earthquakes at convergent plate boundaries. J. Geophys. Res.:Solid Earth, 123(8):7165-7202. Ernst R, Bleeker W. 2010. Large igneous provinces (LIPs), giant dyke swarms, and mantle plumes:significance for breakup events within Canada and adjacent regions from 2.5 Ga to the Present. Can. J. Earth Sci., 47(5):695-739, doi:10.1139/E10-025. Evans D A D. 2003. True polar wander and supercontinents. Tectonophysics, 362(1-4):303-320. Fei Y, Van Orman J, Li J, et al. 2004. Experimentally determined postspinel transformation boundary in Mg2SiO4 using MgO as an internal pressure standard and its geophysical implications. J. Geophys. Res.:Solid Earth, 109(B2):B02305, doi:10.1029/2003JB002562. Foley B J, Bercovici D, Elkins-Tanton L T. 2014. Initiation of plate tectonics from post-magma ocean thermochemical convection. J. Geophys. Res.:Solid Earth, 119(11):8538-8561, doi:10.1002/2014JB011121. Fowler A C. 1985. Fast thermoviscous convection. Stud. Appl. Math., 72(3):189-219. French S W, Romanowicz B. 2015. Broad plumes rooted at the base of the Earth's mantle beneath major hotspots. Nature, 525(7567):95-99. Frey H V. 2006. Impact constraints on, and a chronology for, major events in early Mars history. J. Geophys. Res.:Planets, 111(E8):E08S91, doi:10.1029/2005JE002449. Fukao Y, Widiyantoro S, Obayashi M. 2001. Stagnant slabs in the upper and lower mantle transition region. Rev. Geophys., 39(3):291-323, doi:10.1029/1999RG000068. Fukao Y, Obayashi M. 2013. Subducted slabs stagnant above, penetrating through, and trapped below the 660 km discontinuity. J. Geophys. Res.:Solid Earth, 118(11):5920-5938, doi:10.1002/2013JB010466. Gao X, Wang K L. 2014. Strength of stick-slip and creeping subduction megathrusts from heat flow observations. Science, 345(6200):1038-1041, doi:10.1126/science.1255487. Garnero E J, McNamara A K. 2008. Structure and dynamics of Earth's lower mantle. Science, 320(5876):626-628, doi:10.1126/science.1148028. Gerya T V, Stern R J, Baes M, et al. 2015. Plate tectonics on the Earth triggered by plume-induced subduction initiation. Nature, 527(7577):221-225, doi:10.1038/nature15752 Goes S, Agrusta R, Van Hunen J, et al. 2017. Subduction-transition zone interaction:A review. Geosphere, 13(3):644-664. Grand S P, van der Hilst R D, Widiyantoro S. 1997. Global seismic tomography:A snapshot of convection in the Earth. GSA Today, 7(4):1-7. Grand S P. 2002. Mantle shear-wave tomography and the fate of subducted slabs. Philos. Trans. Roy. Soc. Lond. Ser. A:Math. Phys. Eng. Sci., 360(1800):2475-2491, doi:10.1098/rsta.2002.1077. Gurnis M. 1988. Large-scale mantle convection and the aggregation and dispersal of supercontinents. Nature, 332(6166):695-699. Gurnis M. 1989. A reassessment of the heat transport by variable viscosity convection with plates and lids. Geophys. Res. Lett., 16(2):179-182. Gurnis M, Zhong S J, Toth J. 2000. On the competing roles of fault reactivation and brittle failure in generating plate tectonics from mantle convection.//The History and Dynamics of Global Plate Motions, Volume 121. Geophysical Monograph Series. Washington, DC:American Geophysical Union, 73-94. Hager B H, O'Connell R J. 1979. Kinematic models of large-scale flow in the Earth's mantle. J. Geophys. Res.:Solid Earth, 84(B3):1031-1048. Hager B H. 1984. Subducted slabs and the geoid:Constraints on mantle rheology and flow. J. Geophys. Res.:Solid Earth, 89(B7):6003-6015. Hager B H, Clayton R W, Richards M A, et al. 1985. Lower mantle heterogeneity, dynamic topography and the geoid. Nature, 313(6003):541-545. Hager B H, Richards M A. 1989. Long-wavelength variations in Earth's geoid:physical models and dynamical implications. Philos. Trans. Roy. Soc. Lond. Ser. A:Math. Phys. Sci., 328(1599):309-327. Hall C E, Gurnis M, Sdrolias M, et al. 2003. Catastrophic initiation of subduction following forced convergence across fracture zones. Earth Planet. Sci. Lett., 212(1-2):15-30, doi:10.1016/S0012-821X(03)00242-5. Hansen L N, Kumamoto K M, Thom C A, et al. 2019. Low-temperature plasticity in olivine:Grain size, strain hardening, and the strength of the lithosphere. J. Geophys. Res.:Solid Earth, 124(6):5427-5449, doi:10.1029/2018JB016736. Hassan R, Müller R D, Gurnis M, et al. 2016. A rapid burst in hotspot motion through the interaction of tectonics and deep mantle flow. Nature, 533(7602):239-242. He Y M, Wen L X. 2009. Structural features and shear-velocity structure of the "Pacific Anomaly". J. Geophys. Res.:Solid Earth, 114(B2):B02309, doi:10.1029/2008JB005814. He Y M, Wen L X. 2012. Geographic boundary of the "Pacific Anomaly" and its geometry and transitional structure in the north. J. Geophys. Res.:Solid Earth, 117(B9):B09308, doi:10.1029/2012JB009436. Hernlund J W, McNamara A K. 2015. The core-mantle boundary region.//Schubert G ed. Treatise on Geophysics. 2nd ed. Oxford:Elsevier, 7:461-519. Herzberg C, Condie K, Korenaga J. 2010. Thermal history of the Earth and its petrological expression. Earth Planet. Sci. Lett., 292(1-2):79-88. Hirth G, Kohlstedt D. 2003. Rheology of the upper mantle and the mantle wedge:A view from the experimentalists.//Eiler J ed. Inside the Subduction Factory, Volume 138, Geophysical Monograph Series. Washington, D.C.:AGU, 83-105. Hoffman P F. 1991. Did the breakout of Laurentia turn Gondwanaland inside-out?. Science, 252(5011):1409-1412. Hofmann A W. 1997. Mantle geochemistry:The message from oceanic volcanism. Nature, 385(6613):219-229. Holmes A. 1944. Principles of Physical Geology. Edinburgh, U.K.:Thomas Nelson & Sons. Houser C, Masters G, Shearer P, et al. 2008. Shear and compressional velocity models of the mantle from cluster analysis of long-period waveforms. Geophys. J. Int., 174(1):195-212. Hu J S, Liu L J. 2016. Abnormal seismological and magmatic processes controlled by the tearing South American flat slabs. Earth Planet. Sci. Lett., 450:40-51. Huang C, Zhang N, Li Z X, et al. 2019. Modeling the inception of supercontinent breakup:Stress state and the importance of orogens. Geochem. Geophys. Geosyst., 20(11):4830-4848, doi:10.1029/2019GC008538. Huang J S, Zhong S J, van Hunen J. 2003. Controls on sub-lithospheric small-scale convection. J. Geophys. Res.:Solid Earth, 108(B8):2405, doi:10.1029/2003JB002456. Jacoby W R, Schmeling H. 1982. On the effects of the lithosphere on mantle convection and evolution. Phys. Earth Planet. Inter., 29(3-4):305-319. Jaupart C, Parsons B. 1985. Convective instabilities in a variable viscosity fluid cooled from above. Phys. Earth Planet. Inter., 39(1):14-32. Jeffreys H. 1930. The instability of a compressible fluid heated below. Math. Proc. Camb. Phil. Soc., 26(2):170-172. Jeffreys H. 1970. The Earth:Its Origin, History and Physical Constitution. 5th ed. Cambridge, U.K.:Cambridge University Press. Kanamori H. 1980. The state of stress in the Earth's lithosphere.//Dziewonski A, Boschi E eds. Physics of the Earth's Interior. Amsterdam, The Netherlands:North Holland Publishing Co., 531-554. Karato S I. 2008. Deformation of Earth Materials:An Introduction to the Rheology of Solid Earth. Cambridge, U.K.:Cambridge University Press. King S D, Gable C W, Weinstein S A. 1992. Models of convection-driven tectonic plates:a comparison of methods and results. Geophys. J. Int., 109(3):481-487. Koelemeijer P, Deuss A, Ritsema J. 2017. Density structure of Earth's lowermost mantle from Stoneley mode splitting observations. Nat. Commun., 8:15241, doi:10.1038/ncomms15241. Korenaga J. 2003. Energetics of mantle convection and the fate of fossil heat. Geophys. Res. Lett., 30(8):1437, doi:10.1029/2003GL016982. Korenaga J. 2006. Archean geodynamics and the thermal evolution of Earth.//Benn K, Mareschal J C, Condie K C eds. Archean Geodynamics and Environments, Volume 164, Geophysical Monograph Series. Washington D.C.:AGU, 7-32. Korenaga J. 2018. Crustal evolution and mantle dynamics through Earth history. Philos. Trans. Roy. Soc. A:Math. Phys. Eng. Sci., 376(2132):20170408, doi:10.1098/rsta.2017.0408. Lachenbruch A H, Sass J H. 1988. The stress heat-flow paradox and thermal results from Cajon Pass. Geophys. Res. Lett., 15(9):981-984. Lenardic A, Richards M A, Busse F H. 2006. Depth-dependent rheology and the horizontal length scale of mantle convection. J. Geophys. Res.:Solid Earth, 111 (B7):B07404, doi:10.1029/2005JB003639. Leng W, Zhong S J. 2010. Constraints on viscous dissipation of plate bending from compressible mantle convection. Earth Planet. Sci. Lett., 297(1-2):154-164, doi:10.1016/j.epsl.2010.06.016. Leng W, Gurnis M. 2011. Dynamics of subduction initiation with different evolutionary pathways. Geochem. Geophys. Geosyst., 12(12):Q12018, doi:10.1029/2011GC003877. Leng W, Gurnis M. 2015. Subduction initiation at relic arcs. Geophys. Res. Lett., 42(17):7014-7021, doi:10.1002/2015GL064985. Le Pichon X, Şengör A M C, Īmren C. 2019. Pangea and the lower mantle. Tectonics, 38(10):3479-3504, doi:10.1029/2018TC005445. Li M M, McNamara A K, Garnero E J. 2014. Chemical complexity of hotspots caused by cycling oceanic crust through mantle reservoirs. Nature Geoscience, 7(5):366-370. Li M M, Zhong S J. 2017. The source location of mantle plumes from 3D spherical models of mantle convection. Earth Planet. Sci. Lett., 478:47-57, doi:10.1016/j.epsl.2017.08.033. Li M M, Zhong S J, Olson P. 2018. Linking lowermost mantle structure, core-mantle boundary heat flux and mantle plume formation. Phys. Earth Planet. Inter., 277:10-29, doi:10.1016/j.pepi.2018.01.010. Li M M, Zhong S J. 2019. Lateral motion of mantle plumes in 3-D geodynamic models. Geophys. Res. Lett., 46(9):4685-4693, doi:10.1029/2018GL081404. Li M M. 2020. The formation of hot thermal anomalies in cold subduction-influenced regions of Earth's lowermost mantle. J. Geophys. Res.:Solid Earth, 125(6):e2019JB019312, doi:10.1029/2019JB019312. Li X D, Romanowicz B. 1996. Global mantle shear velocity model developed using nonlinear asymptotic coupling theory. J. Geophys. Res.:Solid Earth, 101(B10):22245-22272, doi:10.1029/96JB01306. Li Y, Deschamps F, Yang J F, et al. 2019a. Effects of the compositional viscosity ratio on the long-term evolution of thermochemical reservoirs in the deep mantle. Geophys. Res. Lett., 46(16):9591-9601. Li Z H, Liu M, Gerya T. 2016. Lithosphere delamination in continental collisional orogens:A systematic numerical study. J. Geophys. Res.:Solid Earth, 121(7):5186-5211. Li Z H, Gerya T, Connolly J A D. 2019b. Variability of subducting slab morphologies in the mantle transition zone:Insight from petrological-thermomechanical modeling. Earth-Science Reviews, 196:102874, doi:10.1016/j.earscirev.2019.05.018. Li Z X, Bogdanova S V, Collins A S, et al. 2008. Assembly, configuration, and break-up history of Rodinia:A synthesis. Precambrian Research, 160(1-2):179-210. Li Z X, Zhong S J. 2009. Supercontinent-superplume coupling, true polar wander and plume mobility:Plate dominance in whole-mantle tectonics. Phys. Earth Planet. Inter., 176(3-4):143-156, doi:10.1016/j.pepi.2009.05.004. Litasov K D, Ohtani E, Sano A, et al. 2005. Wet subduction versus cold subduction. Geophys. Res. Lett., 32(13):L13312, doi:10.1029/2005GL022921. Lithgow-Bertelloni C, Richards M A. 1998. The dynamics of Cenozoic and Mesozoic plate motions. Rev. Geophys., 36(1):27-78, doi:10.1029/97RG02282. Liu L J, Spasojević S, Gurnis M. 2008. Reconstructing Farallon plate subduction beneath North America back to the Late Cretaceous. Science, 322(5903):934-938. Liu L J, Stegman D R. 2012. Origin of Columbia River flood basalt controlled by propagating rupture of the Farallon slab. Nature, 482(7385):386-389. Long M D, Becker T W. 2010. Mantle dynamics and seismic anisotropy. Earth Planet. Sci. Lett., 297(3-4):341-354. Lourenço D L, Rudolph M L. 2020. Shallow lower mantle viscosity modulates the pattern of mantle structure. Geochem. Geophys. Geosyst., 21(8):e2020GC008934, doi:10.1029/2020GC008934. Lowman J P, Jarvis G T. 1996. Continental collisions in wide aspect ratio and high Rayleigh number two-dimensional mantle convection models. J. Geophys. Res.:Solid Earth, 101(B11):25485-25497. Lynner C, Long M D. 2014. Lowermost mantle anisotropy and deformation along the boundary of the African LLSVP. Geophys. Res. Lett., 41 (10):3447-3454, doi:10.1002/2014GL059875. Mao W, Zhong S J. 2018. Slab stagnation due to a reduced viscosity layer beneath the mantle transition zone. Nature Geoscience, 11(11):876-881. Mao W, Zhong S J. 2019. Controls on global mantle convective structures and their comparison with seismic models. J. Geophys. Res.:Solid Earth, 124(8):9345-9372. Mao W, Zhong S J. 2021a. Constraints on mantle viscosity from intermediate-wavelength geoid anomalies in mantle convection models with plate motion history. J. Geophys. Res.:Solid Earth, 126(4):e2020JB021561, doi:10.1029/2020JB021561. Mao W, Zhong S J. 2021b. Formation of horizontally deflected slabs in the mantle transition zone caused by spinel-to-post-spinel phase transition, its associated grainsize reduction effects, and trench retreat. Geophys. Res. Lett., 48(15):e2021GL093679, doi:10.1029/2021GL093679. Masters G, Laske G, Bolton H, et al. 2000. The Relative Behavior of Shear Velocity, Bulk Sound Speed, and Compressional Velocity in the Mantle:Implications for Chemical and Thermal Structure.//Karato S I, Forte A, Liebermann R, et al eds. Earth's Deep Interior:Mineral Physics and Tomography from the Atomic to the Global Scale. Washington, DC:American Geophysical Union, 63-87. McKenzie D P, Parker R L. 1967. The North Pacific:an example of tectonics on a sphere. Nature, 216(5122):1276-1280. McKenzie D P, Roberts J M, Weiss N O. 1974. Convection in the Earth's mantle:towards a numerical simulation. J. Fluid Mech., 62(3):465-538. McNamara A K, van Keken P E. 2000. Cooling of the Earth:A parameterized convection study of whole versus layered models. Geochem. Geophys. Geosyst., 1(11):1027, doi:10.1029/2000GC000045. McNamara A K, Zhong S J. 2004. Thermochemical structures within a spherical mantle:Superplumes or piles?. J. Geophys. Res.:Solid Earth, 109(B7):B07402, doi:10.1029/2003JB002847. McNamara A K, Zhong S J. 2005a. Thermochemical structures beneath Africa and the Pacific Ocean. Nature, 437(7062):1136-1139. McNamara A K, Zhong S J. 2005b. Degree-one mantle convection:Dependence on internal heating and temperature-dependent rheology. Geophys. Res. Lett., 32(1):L01301, doi:10.1029/2004GL021082. McNamara A K. 2019. A review of large low shear velocity provinces and ultra low velocity zones. Tectonophysics, 760:199-220. Mei S, Suzuki A M, Kohlstedt D L, et al. 2010. Experimental constraints on the strength of the lithospheric mantle. J. Geophys. Res.:Solid Earth, 115(B8):B08204, doi:10.1029/2009JB006873. Minster J B, Jordan T H. 1978. Present-day plate motions. J. Geophys. Res.:Solid Earth, 83(B11):5331-5354. Molnar P, Stock J. 1987. Relative motions of hotspots in the Pacific, Atlantic and Indian Oceans since Late Cretaceous time. Nature, 327(6123):587-591, doi:10.1038/327587a0. Montelli R, Nolet G, Dahlen F A, et al. 2004. Finite frequency tomography reveals a variety of plumes in the mantle. Science, 303(5656):338-343. Moresi L, Solomatov V. 1998. Mantle convection with a brittle lithosphere:thoughts on the global tectonic styles of the Earth and Venus. Geophys. J. Int., 133:669-682, doi:10.1046/j.1365-246X.1998.00521.x. Moresi L N, Solomatov V S. 1995. Numerical investigation of 2D convection with extremely large viscosity variations. Phys. Fluids, 7(9):2154-2162. Morgan W J. 1971. Convection plumes in the lower mantle. Nature, 230(5288):42-43. Mulyukova E, Bercovici D. 2019. The generation of plate tectonics from grains to global scales:A brief review. Tectonics, 38(12):4058-4076, doi:10.1029/2018TC005447 Ni S D, Tan E, Gurnis M, et al. 2002. Sharp sides to the African superplume. Science, 296(5574):1850-1852, doi:10.1126/science.1070698. Noack L, Breuer D. 2014. Plate tectonics on rocky exoplanets:Influence of initial conditions and mantle rheology. Planetary and Space Science, 98:41-49. Olson P, Deguen R, Rudolph M L, et al. 2015. Core evolution driven by mantle global circulation. Phys. Earth Planet. Inter., 243:44-55. O'Neill C, Jellinek A M, Lenardic A. 2007. Conditions for the onset of plate tectonics on terrestrial planets and moons. Earth Planet. Sci. Lett., 261(1-2):20-32. Panasyuk S V, Hager B H. 1998. A model of transformational superplasticity in the upper mantle. Geophys. J. Int., 133(3):741-755. Panning M, Romanowicz B. 2006. A three-dimensional radially anisotropic model of shear velocity in the whole mantle. Geophys. J. Int., 167(1):361-379, doi:10.1111/j.1365-246X.2006.03100.x Pearce J A. 2008. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos, 100(1-4):14-48. Ratcliff J T, Tackley P J, Schubert G, et al. 1997. Transitions in thermal convection with strongly variable viscosity. Phys. Earth Planet. Inter., 102 (3-4):201-212, doi:10.1016/S0031-9201(97)00013-7. Ricard Y, Richards M, Lithgow-Bertelloni C, et al. 1993. A geodynamic model of mantle density heterogeneity. J. Geophys. Res.:Solid Earth, 98(B12):21895-21909. Richards M A, Yang W S, Baumgardner J R, et al. 2001. Role of a low-viscosity zone in stabilizing plate tectonics:Implications for comparative terrestrial planetology. Geochem. Geophys. Geosyst., 2(8):2000GC000115, doi:10.1029/2000GC000115. Ritsema J, van Heijst H J, Woodhouse J H. 1999. Complex shear wave velocity structure imaged beneath Africa and Iceland. Science, 286(5446):1925-1928, doi:10.1126/science.286.5446.1925. Ritsema J, Deuss A, van Heijst H J, et al. 2011. S40RTS:a degree-40 shear-velocity model for the mantle from new Rayleigh wave dispersion, teleseismic traveltime and normal-mode splitting function measurements. Geophys. J. Int., 184(3):1223-1236, doi:10.1111/j.1365-246X.2010.04884.x. Rudolph M L, Lekić V, Lithgow-Bertelloni C. 2015. Viscosity jump in Earth's mid-mantle. Science, 350(6266):1349-1352. Rudolph M L, Moulik P, Lekić V. 2020. Bayesian inference of mantle viscosity from whole-mantle density models. Geochem. Geophys. Geosyst., 21(11):e2020GC009335, doi:10.1029/2020GC009335. Schellart W P. 2009. Evolution of the slab bending radius and the bending dissipation in three-dimensional subduction models with a variable slab to upper mantle viscosity ratio. Earth Planet. Sci. Lett., 288(1-2):309-319, doi:10.1016/j.epsl.2009.09.034. Schubert G, Turcotte D L, Olson P. 2001. Mantle Convection in the Earth and Planets. Cambridge:Cambridge University Press. Schuberth B S A, Bunge H P, Ritsema J. 2009. Tomographic filtering of high-resolution mantle circulation models:Can seismic heterogeneity be explained by temperature alone?. Geochem. Geophys. Geosyst., 10(5):Q05W03, doi:10.1029/2009GC002401. Scotese C R. 1997. Continental Drift. 7th ed. PALEOMAP Project, Arlington, Texas. Seton M, Müller R D, Zahirovic S, et al. 2012. Global continental and ocean basin reconstructions since 200 Ma. Earth-Science Reviews, 113(3-4):212-270. Shirey S B, Richardson S H. 2011. Start of the Wilson cycle at 3 Ga shown by diamonds from subcontinental mantle. Science, 333(6041):434-436. Sleep N H. 1994. Martian plate tectonics. J. Geophys. Res.:Planets, 99(E3):5639-5655, doi:10.1029/94JE00216. Smith A G, Hurley A M, Briden J C. 1981. Phanerozoic Paleocontinental World Maps. Cambridge:Cambridge University Press. Solomatov V S. 2004. Initiation of subduction by small-scale convection. J. Geophys. Res.:Solid Earth, 109(B1):B01412, doi:10.1029/2003JB002628. Solomatov V S. 2007. Magma oceans and primordial mantle differentiation.//Schubert G ed. Treatise on Geophysics. Elsevier, 9:91-119. Solomatov V S, Reese C C. 2008. Grain size variations in the Earth's mantle and the evolution of primordial chemical heterogeneities. J. Geophys. Res.:Solid Earth, 113(B7):B07408, doi:10.1029/2007JB005319. Steinberger B, Sutherland R, O'Connell R J. 2004. Prediction of Emperor-Hawaii seamount locations from a revised model of global plate motion and mantle flow. Nature, 430(6996):167-173, doi:10.1038/nature02660. Stern R J. 2020. The mesoproterozoic single-lid tectonic episode:prelude to modern plate tectonics. GSA Today, 30:4-10, https://doi.org/10.1130/GSATG480A.1. Su W J, Woodward R L, Dziewonski A M. 1994. Degree 12 model of shear velocity heterogeneity in the mantle. J. Geophys. Res.:Solid Earth, 99(B4):6945-6980, doi:10.1029/93JB03408. Su W J, Dziewonski A M. 1997. Simultaneous inversion for 3-D variations in shear and bulk velocity in the mantle. Phys. Earth Planet. Inter., 100(1-4):135-156. Tackley P J. 1993. Effects of strongly temperature-dependent viscosity on time-dependent, three-dimensional models of mantle convection. Geophys. Res. Lett., 20(20):2187-2190, doi:10.1029/93GL02317. Tackley P J, Stevenson D J, Glatzmaier G A, et al. 1993. Effects of an Endothermic phase-transition at 670 Km depth in a spherical model of convection in the Earth's mantle. Nature, 361(6414):699-704, doi:10.1038/361699a0. Tackley P J. 1996. On the ability of phase transitions and viscosity layering to induce long wavelength heterogeneity in the mantle. Geophys. Res. Lett., 23(15):1985-1988, doi:10.1029/96GL01980. Tackley P J. 1998. Three-dimensional simulations of mantle convection with a thermo-chemical basal boundary layer.//Gurnis M, Wysession M E, Knittle E, et al eds. Core-Mantle Boundary Region, Volume 28. Washington:AGU, 231-253. Tackley P J. 2000. Self-consistent generation of tectonic plates in time-dependent, three-dimensional mantle convection simulations 2. Strain weakening and asthenosphere. Geochem. Geophys. Geosyst., 1(8):1026, doi:10.1029/2000GC000043. Tackley P J. 2002. Strong heterogeneity caused by deep mantle layering. Geochem. Geophys. Geosyst., 3(4):1024, doi:10.1029/2001GC000167. Tan E, Leng W, Zhong S J, et al. 2011. On the location of plumes and lateral movement of thermochemical structures with high bulk modulus in the 3-D compressible mantle. Geochem. Geophys. Geosyst., 12(7):Q07005, doi:10.1029/2011GC003665. Tarduno J A, Cottrell R D, Davis W J, et al. 2015. A Hadean to Paleoarchean geodynamo recorded by single zircon crystals. Science, 349(6247):521-524, doi:10.1126/science.aaa9114. Thorne M S, Garnero E J, Grand S P. 2004. Geographic correlation between hot spots and deep mantle lateral shear-wave velocity gradients. Phys. Earth Planet. Inter., 146(1-2):47-63, doi:10.1016/j.pepi.2003.09.026.