ZHANG KeLiang,
GAN WeiJun,
LIANG ShiMing et al
.2021.Coseismic displacement and slip distribution of the 2021 May 21, MS6.4, Yangbi Earthquake derived from GNSS observations Chinese Journal of Geophysics(in Chinese),64(7): 2253-2266,doi: 10.6038/cjg2021O0524
Coseismic displacement and slip distribution of the 2021 May 21, MS6.4, Yangbi Earthquake derived from GNSS observations
ZHANG KeLiang1, GAN WeiJun1, LIANG ShiMing1, XIAO GenRu2, DAI ChengLong1, WANG YueBing1,3, LI ZhangJun1,4, ZHANG Ling1, MA GuangQing5
1. State Key Laboratory of Earthquake Dynamics, Institute of Geology, China Earthquake Administration, Beijing 100029, China; 2. Faculty of Geomatics, East China University of Technology, Nanchang 330013, China; 3. China Earthquake Network Center, Beijing 100045, China; 4. The Second Monitoring and Application Center, Xi'an 710054, China; 5. Hebei Earthquake Agency, Shijiazhuang 050021, China
Abstract:The Yangbi MS6.4 Earthquake occurred on May 21, 2021 in Dali, Yunnan Province of China. While it does not produce clear surface ruptures, the earthquake sequence of foreshocks, mainshock and aftershocks distributes linearly to the southwest of the Weixi-Qiaohou-Weishan fault. Based on the observations of a dense GNSS observation network covering the earthquake, we obtained 3-D coseismic displacements in the area within the scope of 50 km from the epicenter. The results show that:a) the earthquake surface rupture is characterized by dextral slip with extension movement; b) the maximum horizontal and vertical displacements are 46 mm (near Huai'an village, Yangbi county) and -44 mm (near Xiuling farm, Yanbi county), respectively; c) coseismic displacement field shows uplift under compression at the fore tips and subsidence due to extension at the end tips of the seismogenic fault, a typical deformation pattern associated with lateral-slip faulting; d) The surface of the seismogenic fault passes through the narrow area between the GNSS stations of Huai'an Village and Xiuling Farm, Yangbi county. Based on the characteristics of coseismic displacements, the spatial distribution of foreshocks and mainshock and the active faults, we inferred the preferred geometric parameters of seismogenic fault with a strike angle of 135°, SW-trending, and a dip angle of 80°. We further estimated the coseismic slip distribution with the constraint from the coseismic displacements in terms of elastic half-space dislocation model. The preliminary results show that the coseismic slips are mainly distributed at the depths between 3 to 12 km with the mean slip of 236 mm, and the moment magnitude of MW6.04; the coseismic slip is spatially coherent with the foreshocks.
Allen C R, Gillespie A R, Yuan H, et al. 1984. Red River and associated faults, Yunnan Province, China:Quaternary geology, slip rates, and seismic hazard. GSA Bulletin, 95(6):686-700, doi:10.1130/0016-7606(1984)95〈686:RRAAFY〉2.0.CO;2. Altamimi Z, Métivier L, Rebischung P, et al. 2017. ITRF2014 plate motion model. Geophysical Journal International, 209(3):1906-1912. Bertiger W, Desai S D, Haines B, et al. 2006. Single receiver phase ambiguity resolution with GPS data. Journal of Geodesy, 84(5):327-337. Boehm J, Niell A, Tregoning P., et al. 2006. Global Mapping Function (GMF):A new empirical mapping function based on numerical weather model data. Geophysical Research Letters, 33(L07304):1-4, doi:10.1029/2005GL025546. Chang Z F, Chang H, Zang Y, et al. 2016. Recent active features of Weixi-Qiaohou fault and its relationship with the Honghe fault. Journal of Geomechanics (in Chinese), 22(3):517-530. Chang Z F, Zhang Y F, Zhou Q Y, et al. 2014. Intensity distribution characteristics and active tectonic background in area of the 2013 Eryuan MS5.5 earthquake. Earthquake Research in China (in Chinese), 30(4):560-570. Cheng J, Liu J, Gan W J, et al. 2011. Characteristics of strong earthquake evolution around the eastern boundary faults of the Sichuan-Yunnan rhombic block. Science China Earth Science, 54(11):1716-1729, doi:10.1007/s11430-011-4290-2. Cheng J, Xu X W, Gan W J, et al. 2012. Block model and dynamic implication from the earthquake activities and crustal motion in the southeastern margin of Tibetan Plateau. Chinese Journal of Geophysics (in Chinese), 55(4):1198-1212, doi:10.6038/j.issn.0001-5733.2012.04.016. Dong D N, Fang P, Bock Y, et al. 2006. Spatiotemporal filtering using principal component analysis and Karhunen-Loeve expansion approaches for regional GPS network analysis. Journal of Geophysical Research Solid Earth, 111(B3):B03405, doi:10.1029/2005jb003806. Gan W J, Zhang P Z, Shen Z K, et al. 2007. Present-day crustal motion within the Tibetan Plateau inferred from GPS measurements. Journal of Geophysical Research:Solid Earth, 112(B8):B08416, doi:10.1029/2005JB004120. Guo S M, Ji F J, Xiang H F, et al. 2013. Geological Map of the Red River Fault in Yunnan Province, China (in Chinese). Beijing:Seismological Press, 1-21. Guo S M, Zhang J, Li X G, et al. 1984. Fault displacement and recurrence intervals of earthquakes at the northern segment of the Honghe fault zone, Yunnan province. Seismology and Geology (in Chinese), 6(1):1-12. Huang X L, Wu Z H, Jiang Y, et al. 2015. Seismic intensity distribution and seismogenic structure analysis of the March 3, 2013 Eryuan MS5.5 earthquake in Dali, Yunnan Province. Geological Bulletin of China (in Chinese), 34(1):135-145. Jian H Z, Wang L F, Gan W J, et al. 2019. Geodetic Model of the 2017 MW6.5 Mainling Earthquake Inferred from GPS and InSAR Data. Remote Sensing, 11(24):2940. https://doi.org/10.3390/rs11242940. Leloup P H, Lacassin R, Tapponnier P, et al. 1995. The Ailao Shan-Red River shear zone (Yunnan, China), tertiary transform boundary of Indo-China. Tectonophysics, 251(1-4):3-10, 13-84, doi:10.1016/0040-1951(95)00070-4. Li X, Ran Y K, Chen L C, et al. 2016. The Holocene seismic evidence on southern segment of the Red River fault zone. Seismology and Geology (in Chinese), 38(3):596-604. Li Z J, Wang Y, Gan W J, et al. 2020. Diffuse deformation in the se tibetan plateau:new insights from geodetic observations. Journal of Geophysical Research:Solid Earth, 125(10):e2020JB019383, doi:10.1029/2020JB019383. Ma J, Guo Y S. Accelerated synergism prior to fault instability:evidence from laboratory experiments and an earthquake case. Seismology and Geology (in Chinese), 36(3):547-551. Ma J, Sherman S I, Guo Y S. 2012. Identification of meta-instable stress based on experimental study of evolution of the temperature field during stick-slip instability on a 5° bending fault. Science China:Earth Science (in Chinese), 42(5):633-645. Okada Y. 1992. Internal deformation due to shear and tensile faults in a half-space. Bulletin of the Seismological Society of America, 82(2):1018-1040. Pan R, Jiang J Z, Fu H, et al. 2019. Focal mechanism and focal depth determination of Yunnan Yangbi MS5.1 and MS4.8 earthquakes in 2017. Journal Seismological Research (in Chinese), 42(3):338-348. Ren J J, Zhang S M, Hou Z H, et al. 2007. Study of late quaternary slip rate in the mid-segment of the Tongdian-Weishan fault. Seismology and Geology (in Chinese), 29(4):756-764. Replumaz A, Lacassin R, Tapponnier P, et al. 2001. Large river offsets and Plio-Quaternary dextral slip rate on the Red River fault (Yunnan, China). Journal of Geophysical Research:Solid Earth, 106(B1):819-836, doi:10.1029/2000JB900135. Schmid R, Steigenberger P, Gendt G, et al. 2007. Generation of a consistent absolute phase-center correction model for GPS receiver and satellite antenna. Journal of Geodesy, 81:781-798. Schoenbohm L M, Burchfiel B, Chen L Z, et al. 2006. Miocene to present activity along the red river fault, china, in the context of continental extrusion, upper-crustal rotation, and lower-crustal flow. GSA Bulletin, 118(5-6):672-688. Shen Z K, Lü J, Wang M, et al. 2005. Contemporary crustal deformation around the southeast borderland of the Tibetan Plateau. Journal of Geophysical Research:Solid Earth, 110(B11):B11409, doi:10.1029/2004JB003421. Shi X H, Sieh K, Weldon R, et al. 2018. Slip rate and rare large prehistoric earthquakes of the Red River fault, southwestern China. Geochemistry, Geophysics, Geosystems, 19(7):2014-2031, doi:10.1029/2017GC007420. Wang E Q, Burchfiel B C, Royden L H, et al. 1998. Late Cenozoic Xianshuihe-Xiaojiang, Red river, and Dali fault systems of southwestern Sichuan and central Yunnan, China. Geological Society of America Special Paper, 327:1-108, doi:10.1130/0-8137-2327-2.1. Boulder, Colorado:Geological Society of America. Wang M, Shen Z K. 2020. Present-day crustal deformation of continental china derived from GPS and its tectonic implications. Journal of Geophysical Research:Solid Earth, 125(2):e2019JB018774, doi:10.1029/2019JB018774. Wang R J, Diao F Q, Hoechner A. 2013. SDM-A geodetic inversion code incorporating with layered crust structure and curved fault geometry.//Proceedings of the General Assembly European Geosciences Union. Vienna, Austria:EGU. Wang W M, He J K, Hao J L, et al. 2021. Preliminary result for rupture process of May 21, 2021, M6.4 earthquake, Dali, China. (in Chinese). Personal Communication. Wang W, Qiao X J, Yang S M, et al. 2017. Present-day velocity field and block kinematics of Tibetan plateau from GPS measurements. Geophysical Journal International, 208(2):1088-1102, doi:10.1093/gji/ggw445. Wang Y B, Gan W J, Chen W T, et al. 2018. Coseismic displacements of the 2017 Jiuzhaigou M7.0 earthquake observed by GNSS:preliminary results. Chinese Journal of Geophysics (in Chinese), 61(1) 161-170, doi:10.6038/cjg2018L0611. Wang Y Z, Wang E N, Shen Z K, et al. 2008. GPS-constrained inversion of present-day slip rates along major faults of the Sichuan-Yunnan region, China. Science in China Series D:Earth Sciences, 51(9):1267-1287. Webb F H, Zumberge J F. 1993. An introduce to GIPSY-OASIS II, Jet Propulsion Laboratory user manual, JPL Technical Document D-11088, Jet Propulsion Lab, Pasadena, California. Wen X Z, Du F, Long F, et al. 2011. Tectonic dynamics and correlation of major earthquake sequences of the Xiaojiang and Qujiang-Shiping fault systems, Yunnan, China. Science China Earth Sciences, 54(10):1563-1575, doi:10.1007/s11430-011-4231-0. Wen X Z, Ma S L, Xu X W, et al. 2008. Historical pattern and behavior of earthquake ruptures along the eastern boundary of the Sichuan-Yunnan faulted-block, southwestern China. Physics of the Earth and Planetary Interiors, 168(1-2):16-36. Wessel P, Smith W H F. 1995. New version of the Generic Mapping Tools released, EOS Trans. AGU, 76, p.329. Xu J, Shao Z G, Liu J, et al. 2019. Coulomb stress evolution and future earthquake probability along the eastern boundary of the Sichuan-Yunnan block. Chinese Journal of Geophysics (in Chinese), 62(11):4189-4213, doi:10.6038/cjg2019M0593. Yang J, Su Y J, Li X B, et al. 2015. Research on focal mechanism solutions of ML>3.4 earthquakes of Eryuan MS5.5 earthquake sequence in 2013. Journal of Seismological Research (in Chinese), 38(2):196-202. Yang T, Zhong Y S, Fang L H, et al. 2021. Relocation of the aftershock sequence of the MS6.4 Yangbi earthquake, Yunnan. Journal of Earth Science, in review. https://www.researchgate.net/publication/352160417_Relocation_of_the_aftershock_sequence_of_the_MS64_Yangbi_earthquake_Yunnan?channel=doi&linkId=60bc123d92851cb13d7ec5a6&showFulltext=true. Yin F L, Jiang C S, Han L B, et al. 2018. Seismic hazard assessment for the Red River fault:insight from Coulomb stress evolution. Chinese Journal of Geophysics (in Chinese), 61(1):183-198, doi:10.6038/cjg2018L0369. Zhang P Z, Shen Z K, Wang M, et al. 2004. Continuous deformation of the Tibetan Plateau from global positioning system data. Geology, 32(9):809-812, doi:10.1130/G20554.1. Zhang P Z. 2013. Beware of slowly slipping faults. Nature Geoscience, 6(5):323-324, doi:10.1038/ngeo1811. Zhao X Y, Fu H. 2014. Seismogenic structure identification of the 2013 Eryuan MS5.5 and MS5.0 earthquake sequence. Acta Seismologica Sinica (in Chinese), 36(4):640-650, doi:10.3969/j.issn.0253-3782.2014.04.010. Zumberge J F, Heflin M B, Jefferson D C, et al. 1997. Precise point positioning for the efficient and robust analysis of GPS data from large networks. Journal of Geophysical Research:Solid Earth, 102(B3):5005-5017, doi:10.1029/96JB03860. 附中文参考文献 常祖峰, 张艳凤, 周青云等. 2014. 2013年洱源MS5.5地震烈度分布及震区活动构造背景研究. 中国地震, 30(4):560-570. 常祖峰, 常昊, 臧阳等. 2016. 维西-乔后断裂新活动特征及其与红河断裂的关系. 地质力学学报, 22(3):517-530. 程佳, 刘杰, 甘卫军等. 2011. 川滇菱形块体东边界各断层段强震演化特征研究. 中国科学 地球科学, 41(9):1131-1326. 程佳, 徐锡伟, 甘卫军等. 2012. 青藏高原东南缘地震活动与地壳运动所反映的块体特征及其动力来源. 地球物理学报, 55(4):1198-1212, doi:10.6038/j.issn.0001-5733.2012.04.016. 虢顺民, 张靖, 李祥根等. 1984. 云南红河断裂带北段断裂位错与地震重复发生的时间间隔. 地震地质, 6(1):1-12. 虢顺民, 计凤桔, 向红发等. 2013. 云南红河断裂带地质图:1:50000. 北京:地震出版社, 1-21. 黄小龙, 吴中海, 蒋瑶等. 2015. 2013年3月3日云南大理洱源MS5.5地震烈度分布及发震构造. 地质通报, 34(1):135-145. 李西, 冉勇康, 陈立春等. 2016. 红河断裂带南段全新世地震活动 证据. 地震地质, 38(3):596-604. 马瑾, 郭彦双. 2014. 失稳前断层加速协同化的实验室证据和地震实例. 地震地质, 36(3):547-551. 马瑾, Sherman S I, 郭彦双. 2012. 地震前亚失稳应力状态的识别-以5°拐折断层变形温度场演化的实验为例. 中国科学:地球科学, 42(5):633-645. 潘睿, 姜金钟, 付虹等. 2019. 2017年云南漾濞MS5.1及MS4.8地震震源机制解和震源深度测定. 地震研究, 42(3):338-348. 任俊杰, 张世民, 侯治华等. 2007. 滇西北通甸-巍山断裂中段的晚第四纪滑动速率. 地震地质, 29(4):756-764. 王卫民, 何建坤, 郝金来等. 2021. 2021年5月21日云南大理M6.4级地震震源破裂过程反演初步结果. 个人通讯. 王阎昭, 王恩宁, 沈正康等. 2008. 基于GPS资料约束反演川滇地区主要断裂现今活动速率. 中国科学D辑:地球科学, 38(5):582-597. 王阅兵, 甘卫军, 陈为涛, 等. 2018. GNSS观测的九寨沟7.0级地震同震位移初步结果. 地球物理学报, 61(1) 161-170, doi:10.6038/cjg2018L0611. 闻学泽, 杜方, 龙锋等. 2011. 小江和曲江-石屏两断裂系统的构造动力学与强震序列的关联性. 中国科学:地球科学, 41(5):713-724. 徐晶, 邵志刚, 刘静等. 2019. 川滇菱形块体东边界库仑应力演化及强震发生概率估算. 地球物理学报, 62(11):4189-4213, doi:10.6038/cjg2019M0593. 杨军, 苏有锦, 李孝宾等. 2015. 2013年洱源MS5.5地震序列ML ≥ 3.4地震的震源机制解研究. 地震研究, 38(2):196-202. 尹凤玲, 蒋长胜, 韩立波等. 2018. 红河断裂带库仑应力演化及未来地震危险性估计. 地球物理学报, 61(1):183-198, doi:10.6038/cjg2018L0369. 赵小艳, 付虹. 2014. 2013年洱源MS5.5和MS5.0地震发震构造识别. 地震学报, 36(4):640-650, doi:10.3969/j.issn.0253-3782.2014.04.010.