LIU WenXiao,
LI ChunFeng,
ZHU Shuang et al
.2021.Spatial variations and controlling factors of the effective elastic thickness of the Western Pacific lithospheres Chinese Journal of Geophysics(in Chinese),64(6): 1975-1986,doi: 10.6038/cjg2021O0245
Spatial variations and controlling factors of the effective elastic thickness of the Western Pacific lithospheres
LIU WenXiao1, LI ChunFeng1,2, ZHU Shuang1, LU ZheZhe1, WU ZhaoCai3
1. Department of Marine Sciences, Zhejiang University, Zhejiang Zhoushan 316021, China; 2. Evalution and Detection Technology Laboratory of Marine Mineral Resources, Qingdao National Laboratory for Marine Science and Technology, Shandong Qingdao 266237, China; 3. Key Laboratory of Submarine Geosciences of Ministry of Natural Resources, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
Abstract:The Western Pacific has strong tectonic interactions of several plates and has experienced complex thermal and dynamic evolution. The analysis of the effective elastic thickness of lithosphere (Te) helps better understand complex tectonic settings. Here we estimate spatial variations of Te by fan wavelet admittance between free-air gravity anomaly model WGM2012 and topography model ETOPO1. Te in the Western Pacific is mainly distributed in the range of 5~85 km. Low Te (less than 20 km) are distributed in young rifting/spreading areas such as the South China Sea. High Te (over 80 km) are found mainly near the subduction zones, and are correlated to the age of subducting plate. Referring to the plate cooling model, the bases of elastic lithospheres are mainly located between 200℃ and 500℃ isotherms, and gradually stablizes in depth as the oceanic crust ages. In many places, such as seamounts and young basins, Te is correlated positively with Curie point depth and negatively with surface heat flow. However, due to the strong tectonic activity, hydrothermal circulation, magmatic activities and mantle reology in the Western Pacific, the overall correlation between Te and lithospheric thermal proxies (Curie point depth and surface heat flow) is low.
Altis S. 1999. Origin and tectonic evolution of the caroline ridge and the sorol trough, western tropical Pacific, from admittance and a tectonic modeling analysis. Tectonophysics, 313(3):271-292, doi:10.1016/S0040-1951(99)00204-8. Amante C, Eakins B W. 2009. ETOPO1, 1 Arc-Minute Global Relief Model:procedures, data sources and analysis. Psychologist, 16(3):20-25, doi:10.7289/V5C8276M. Andrés J, Marzán I, Ayarza P, et al. 2018. Curie point depth of the Iberian Peninsula and surrounding margins. A thermal and tectonic perspective of its evolution. Journal of Geophysical Research:Solid Earth, 123(3):2049-2068, doi:10.1002/2017JB014994. Bai Y L, Dong D D, Kirby J F, et al. 2018. The effect of dynamic topography and gravity on lithospheric effective elastic thickness estimation:a case study. Geophysical Journal International, 214(1):623-634, doi:10.1093/gji/ggy162. Ballmer M D, Hunen J V, Ito G, et al. 2009. Intraplate volcanism with complex age-distance patterns:A case for small-scale sublithospheric convection. Geochemistry, Geophysics, Geosystems, 10(6):Q06015, doi:10.1029/2009GC002386. Balmino G, Vales N, Bonvalot S, et al. 2012. Spherical harmonic modelling to ultra-high degree of Bouguer and isostatic anomalies. Journal of Geodesy, 86(7):499-520, doi:10.1007/s00190-011-0533-4. Chen B, Chen C, Kaban M K, et al. 2013. Variations of the effective elastic thickness over China and surroundings and their relation to the lithosphere dynamics. Earth and Planetary Science Letters, 363:61-72, doi:10.1016/j.epsl.2012.12.022. Chen B, Haeger C, Kaban M K, et al. 2018. Variations of the effective elastic thickness reveal tectonic fragmentation of the Antarctic lithosphere. Tectonophysics, 746:412-424, doi:10.1016/j.tecto.2017.06.012. Chen B, Liu J X, Chen C, et al. 2015. Elastic thickness of the Himalayan-Tibetan orogen estimated from the fan wavelet coherence method, and its implications for lithospheric structure. Earth and Planetary Science Letters, 409:1-14, doi:10.1016/j.epsl.2014.10.039. Chen B, Liu J X, Kaban M K, et al. 2014. Elastic thickness, mechanical anisotropy and deformation of the southeastern Tibetan Plateau. Tectonophysics, 637:45-56, doi:10.1016/j.tecto.2014.09.007. Clouard V, Bonneville A. 2005. Ages of seamounts, islands, and plateaus on the Pacific plate.//Foulger G R, Natland J H, Presnall D C, et al eds. Plates, Plumes and Paradigms. Boulder:Geological Society of America, 71-90. doi:10.1130/0-8137-2388-4.71. Davis E E, Lister C R B. 1974. Fundamentals of ridge crest topography. Earth and Planetary Science Letters, 21(4):405-413, doi:10.1016/0012-821X(74)90180-0. Debayle E, Dubuffet F, Durand S. 2016. An automatically updated S-wave model of the upper mantle and the depth extent of azimuthal anisotropy. Geophysical Research Letters, 43(2):674-682, doi:10.1002/2015GL067329. Deng Y F, Zhang Z J, Fan W M, et al. 2014. Multitaper spectral method to estimate the elastic thickness of South China:Implications for intracontinental deformation. Geoscience Frontiers, 5(2):193-203, doi:10.1016/j.gsf.2013.05.002. Dorman L M, Lewis B T R. 1970. Experimental isostasy:1. Theory of the determination of the Earth's isostatic response to a concentrated load. Journal of Geophysical Research, 75(17):3357-3365, doi:10.1029/JB075i017p03357. Forsyth D W. 1985. Subsurface loading and estimates of the flexural rigidity of continental lithosphere. Journal of Geophysical Research:Solid Earth, 90(B14):12623-12632, doi:10.1029/JB090iB14p12623. Hansen L N, Kumamoto K M, Thom C A, et al. 2019. Low-temperature plasticity in olivine:Grain size, strain hardening, and the strength of the lithosphere. Journal of Geophysical Research:Solid Earth, 124(6):5427-5449, doi:10.1029/2018JB016736. Hu M Z, Li J C, Jin T Y, et al. 2015. Three-dimensional estimate of the lithospheric effective elastic thickness of the Line ridge. Tectonophysics, 658:61-73, doi:10.1016/j.tecto.2015.07.008. Hunter J, Watts A B. 2016. Gravity anomalies, flexure and mantle rheology seaward of circum-Pacific trenches. Geophysical Journal International, 207(1):288-316, doi:10.1093/gji/ggw275. Ishikawa A, Pearson D G, Dale C W. 2011. Ancient Os isotope signatures from the Ontong Java plateau lithosphere:tracing lithospheric accretion history. Earth and Planetary Science Letters, 301(1-2):159-170, doi:10.1016/j.epsl.2010.10.034. Kalnins L M, Watts A B. 2009. Spatial variations in effective elastic thickness in the Western Pacific Ocean and their implications for Mesozoic volcanism. Earth and Planetary Science Letters, 286(1-2):89-100, doi:10.1016/j.epsl.2009.06.018. Karner G D, Watts A B. 1983. Gravity anomalies and flexure of the lithosphere at mountain ranges. Journal of Geophysical Research:Solid Earth, 88(B12):10449-10477, doi:10.1029/JB088iB12p10449. Kirby J F. 2005. Which wavelet best reproduces the Fourier power spectrum?. Computers & Geosciences, 31(7):846-864, doi:10.1016/j.cageo.2005.01.014. Kirby J F. 2014. Estimation of the effective elastic thickness of the lithosphere using inverse spectral methods:The state of the art. Tectonophysics, 631:87-116, doi:10.1016/j.tecto.2014.04.021. Kirby J F, Swain C J. 2004. Global and local isostatic coherence from the wavelet transform. Geophysical Research Letters, 31(24):L24608, doi:10.1029/2004gl021569. Kirby J F, Swain C J. 2008. An accuracy assessment of the fan wavelet coherence method for elastic thickness estimation. Geochemistry, Geophysics, Geosystems, 9(3):Q03022, doi:10.1029/2008GC002071. Kirby J F, Swain C J. 2011. Improving the spatial resolution of effective elastic thickness estimation with the fan wavelet transform. Computers & Geosciences, 37(9):1345-1354, doi:10.1016/j.cageo.2010.10.008. Kumamoto K M, Thom C A, Wallis D, et al. 2017. Size effects resolve discrepancies in 40 years of work on low-temperature plasticity in olivine. Science Advances, 3(9):e1701338, doi:10.1126/sciadv.1701338. Laske G, Masters G, Ma Z T, et al. 2013. Update on CRUST1.0-A 1-degree global model of earth's crust.//EGU General Assembly 2013. Vienna, Austria:EGU. Li C F, Lu Y, Wang J. 2017. A global reference model of Curie-point depths based on EMAG2. Scientific Reports, 7:45129, doi:10.1038/srep45129. Li C F, Wang J. 2016. Variations in moho and curie depths and heat flow in Eastern and Southeastern Asia. Marine Geophysical Research, 37(1):1-20, doi:10.1007/s11001-016-9265-4. Li Y D, Zheng Y, Xiong X, et al. 2013. Lithospheric effective elastic thickness and its anisotropy in the northeast Qinghai-Tibet plateau. Chinese Journal of Geophysics (in Chinese), 56(4):1132-1145, doi:10.6038/cjg20130409. Lu Z Z, Li C F, Zhu S, et al. 2020. Effective elastic thickness over the Chinese mainland and surroundings estimated from a joint inversion of Bouguer admittance and coherence. Physics of the Earth and Planetary Interiors, 301:106456, doi:10.1016/j.pepi.2020.106456. McKenzie D, Bowin C. 1976. The relationship between bathymetry and gravity in the Atlantic Ocean. Journal of Geophysical Research, 81(11):1903-1915, doi:10.1029/jb081i011p01903. McKenzie D, Jackson J, Priestley K. 2005. Thermal structure of oceanic and continental lithosphere. Earth and Planetary Science Letters, 233(3-4):337-349, doi:10.1016/j.epsl.2005.02.005. McNutt M K, Parker R L. 1978. Isostasy in Australia and the evolution of the compensation mechanism. Science, 199(4330):773-775, doi:10.1126/science.199.4330.773. Müller R D, Sdrolias M, Gaina C, et al. 2008. Age, spreading rates, and spreading asymmetry of the world's ocean crust. Geochemistry, Geophysics, Geosystems, 9(4):Q04006, doi:10.1029/2007GC001743. Pasyanos M E, Masters T G, Laske G, et al. 2014. LITHO1.0:An updated crust and lithospheric model of the Earth. Journal of Geophysical Research:Solid Earth, 119(3):2153-2173, doi:10.1002/2013JB010626. Pérez-Gussinyé M, Lowry A R, Watts A B, et al. 2004. On the recovery of effective elastic thickness using spectral methods:Examples from synthetic data and from the Fennoscandian Shield. Journal of Geophysical Research:Solid Earth, 109(B10):B10409, doi:10.1029/2003jb002788. Pérez-Gussinyé M, Watts A B. 2005. The long-term strength of Europe and its implications for plate-forming processes. Nature, 436(7049):381-384, doi:10.1038/nature03854. Sager W W, Huang Y M, Tominaga M, et al. 2019. Oceanic plateau formation by seafloor spreading implied by Tamu Massif magnetic anomalies. Nature Geoscience, 12(8):661-666, doi:10.1038/s41561-019-0390-y. Shi X B, Kirby J, Yu C H, et al. 2017. Spatial variations in the effective elastic thickness of the lithosphere in Southeast Asia. Gondwana Research, 42:49-62, doi:10.1016/j.gr.2016.10.005. Straume E O, Gaina C, Medvedev S, et al. 2019. GlobSed:updated total sediment thickness in the world's oceans. Geochemistry, Geophysics, Geosystems, 20(4):1756-1772, doi:10.1029/2018GC008115. Swain C J, Kirby J F. 2006. An effective elastic thickness map of Australia from wavelet transforms of gravity and topography using Forsyth's method. Geophysical Research Letters, 33(2):L02314, doi:10.1029/2005GL025090. Tassara A, Swain C J, Hackney R I, et al. 2007. Elastic thickness structure of South America estimated using wavelets and satellite-derived gravity data. Earth and Planetary Science Letters, 253(1-2):17-36, doi:10.1016/j.epsl.2006.10.008. Wallis D, Hansen L N, Kumamoto K M, et al. 2020. Dislocation interactions during low-temperature plasticity of olivine and their impact on the evolution of lithospheric strength. Earth and Planetary Science Letters, 543:116349, doi:10.1016/j.epsl.2020.116349. Wang M M. 2019. Lithospheric strength of the Caroline Islands and its tectonic implications. Studia Geophysica et Geodatetica, 63(4):520-537, doi:10.1007/s11200-019-0732-7. Wessel P, Smith W H F, Scharroo R, et al. 2013. Generic mapping tools:improved version released. Eos, Transactions American Geophysical Union, 94(45):409-410, doi:10.1002/2013EO450001. Wolfe C J, Mcnutt M K. 1991. Compensation of cretaceous seamounts of the darwin rise, northwest Pacific ocean. Journal of Geophysical Research:Solid Earth, 96(B2):2363-2374, doi:10.1029/90JB01893. Yang A, Fu Y T, Li A C. 2016. The effective elastic thickness of the Caroline plate and its adjacent areas. Chinese Journal of Geophysics (in Chinese), 59(9):3280-3290, doi:10.6038/cjg20160913. Yang A, Fu Y T. 2018. Estimates of effective elastic thickness at subduction zones. Journal of Geodynamics, 117:75-87, doi:10.1016/j.jog.2018.04.007. Zamani A, Samiee J, Kirby J F. 2014. The effective elastic thickness of the lithosphere in the collision zone between Arabia and Eurasia in Iran. Journal of Geodynamics, 81:30-40, doi:10.1016/j.jog.2014.06.002. Zheng Y, Li Y D, Xiong X. 2012. Effective lithospheric thickness and its anisotropy in the North China Craton. Chinese Journal of Geophysics (in Chinese), 55(11):3576-3590, doi:10.6038/j.issn.0001-5733.2012.11.007. 附中文参考文献 胡敏章, 李建成, 李辉等. 2015. 西北太平洋岩石圈有效弹性厚度及其构造意义. 地球物理学报, 58(2):542-555, doi:10.6038/cjg20150217. 胡敏章, 李建成, 徐新禹等. 2017. 全球1°×1°海洋岩石圈有效弹性厚度模型. 武汉大学学报(信息科学版), 42(5):575-582. 胡敏章, 金涛勇, 郝洪涛等. 2020. 青藏高原东南缘岩石圈有效弹性厚度及其构造意义. 地球物理学报, 63(3):969-987, doi:10.6038/cjg2020N0225. 李永东, 郑勇, 熊熊等. 2013. 青藏高原东北部岩石圈有效弹性厚度及其各向异性. 地球物理学报, 56(4):1132-1145, doi:10.6038/cjg20130409. 杨安, 付永涛, 李安春. 2016. 卡罗琳板块及其附近地区的岩石圈有效弹性厚度. 地球物理学报, 59(9):3280-3290, doi:10.6038/cjg20160913. 郑勇, 李永东, 熊熊. 2012. 华北克拉通岩石圈有效弹性厚度及其各向异性. 地球物理学报, 55(11):3576-3590, doi:10.6038/j.issn.0001-5733.2012.11.007.