WANG JingQiang,
LI GuanBao,
KAN GuangMing et al
.2020.Experiment study of the in situ acoustic measurement in seafloor sediments from deep sea Chinese Journal of Geophysics(in Chinese),63(12): 4463-4472,doi: 10.6038/cjg2020N0427
Experiment study of the in situ acoustic measurement in seafloor sediments from deep sea
WANG JingQiang1,2,3, LI GuanBao1,3, KAN GuangMing1,3, LIU BaoHua3,4, MENG XiangMei1,3
1. Key Laboratory of Marine Geology and Metallogeny, First Institute of Oceanography, MNR, Qingdao 266061, China; 2. National Key Laboratory of Science and Technology on Underwater Acoustic Antagonizing, Shanghai 201108, China; 3. Laboratory for Marine Geology, Pilot National Laboratory for Marine Science and Technology(Qingdao), Qingdao 266237, China; 4. National Deep Sea Center, MNR, Qingdao 266237, China
Abstract:Due to the obvious differences between the laboratory environment and the in situ environment, the seafloor sediment acoustic properties measured in laboratory usually deviate from the actual results measured by the in situ measurement method. This study measured the acoustic properties of sediments in Western Pacific area (deeper than 5000 meters) using the Ballast In Situ Acoustic Measurement System (BISAMS). The measurements accurately obtained the sound speed and attenuation of seafloor sediments, and collected the sediment samples simultaneously to measure the acoustic properties and physical properties. The measurement results showed that both the laboratory sound speed and attenuation were higher than the in situ measured data. The data-model comparisons indicated that the differences between the laboratory and the in situ sound speed can't be entirely corrected by the temperature-pressure correction model and by the dispersion model. This may be due to the influence on the acoustic properties from the sediment structure disturbance, which is present during the sediment sampling and transporting. As the deep sea sediments are soft and weak, the structure are more easily destroyed than that of the shallow sea sediments. Therefore, the in situ measurement method has an obvious advantage, and will be widely used in deep sea seafloor acoustic study field. This study marked that the seafloor acoustic researches are being approached from shallow water to deep sea.
Badiey M, Cheng A H D, Mu Y K. 1998. From geology to geoacoustics-Evaluation of Biot-Stoll sound speed and attenuation for shallow water acoustics. The Journal of the Acoustical Society of America, 103(1):309-320, doi:10.1121/1.421136. Ballard M S, Lee L M. 2016. Examining the effects of microstructure on geoacoustic parameters in fine-grained sediments. The Journal of the Acoustical Society of America, 140(3):1548-1557, doi:10.1121/1.4962289. Buckingham M J, Richardson M D. 2002. On tone-burst measurements of sound speed and attenuation in sandy marine sediments. IEEE Journal of Oceanic Engineering, 27(3):429-453, doi:10.1109/JOE.2002.1040929. Chen H, Qiu X L, He E Y, et al. 2019. Accurate measurement and inversion for the seafloor positions of Hadal landers. Chinese Journal of Geophysics (in Chinese), 62(5):1744-1754, doi:10.6038/cjg2019M0009. Gorgas T J, Wilkens R H, Fu S S, et al. 2002. In situ acoustic and laboratory ultrasonic sound speed and attenuation measured in heterogeneous soft seabed sediments:eel river shelf, California. Marine Geology, 182(1-2):103-119, doi:10.1016/S0025-3227(01)00230-4. Griffin S R, Grosz F B, Richardson M D. 1996. In situ sediment geoacoustic measurement system. Sea Technology, 37, 19-22. Guo C S, Dou Y T, Gu M F. 2007. Development of in situ marine sediment acoustic measurement technique. Marine Sciences (in Chinese), 31(8):6-10. Hamilton E L. 1971. Prediction of in-situ acoustic and elastic properties of marine sediments. Geophysics, 36(2):266-284, doi:10.1190/1.1440168. Hou Z Y, Guo C S, Wang J Q, et al. 2015. Development and application of a new type in-situ acoustic measurement system of seafloor sediments. Chinese Journal of Geophysics (in Chinese), 58(6):1976-1984, doi:10.6038/cjg20150613. Hou Z Y, Guo C S, Wang J Q, et al. 2015. Seafloor sediment study from South China Sea:acoustic & physical property relationship. Remote Sensing, 7(9):11570-11585, doi:10.3390/rs70911570. Hu G W, Ye Y G, Zhang J, et al. 2012. Acoustic properties of hydrate-bearing unconsolidated sediments based on bender element technique. Chinese Journal of Geophysics (in Chinese), 55(11):3762-3773, doi:10.6038/j.issn.0001-5733.2012.11.023. Jackson D R, Richardson M D. 2007. High-Frequency Seafloor Acoustics. New York:Springer Science. Jackson D R, Richardson M D. 2014. High-Frequency Seafloor Acoustics (in Chinese). Liu B H, Kan G M, Li G B, et al trans. Beijing:Ocean Press. Kan G M, Liu B H, Han G Z, et al. 2010. Application of in-situ measurement technology to the survey of seafloor sediment acoustic properties in the Huanghai Sea. Acta Oceanologica Sinica (in Chinese), 32(3):88-94. Kan G M, Zou D P, Liu B H, et al. 2012. Development and application of a portable seafloor sediment acoustic in situ measurement system. Journal of Tropical Oceanography (in Chinese), 31(4):135-139. Li F, Guo X Y, Zhang Y, et al. 2014. Development and applications of underwater acoustic propagation. Physics (in Chinese), 43(10):658-666. Li G B, Kan G M, Meng X M, et al. 2013. Effect of the condition changes on the laboratory acoustic velocity measurements of seafloor sediments. Advances in Marine Science (in Chinese), 31(3):360-366. Li G B, Wang J Q, Liu B H, et al. 2019. Measurement and modeling of high-frequency acoustic properties in fine sandy sediments. Earth and Space Science, 6(11):20576-2070, doi:10.1029/2019EA000656. Li H X. 2008. In-situ acoustic properties analyse of the sediment in Hangzhou bay and surface low-velocity layer study[Ph. D. thesis] (in Chinese). Changchun:Jilin University. Li Z L, Wang Y J, Ma L, et al. 2000. Effects of sediment parameters on the low frequency acoustic wave propagation in shallow water. Acta Acustica (in Chinese), 25(3):242-247. Schock S G. 2004. A method for estimating the physical and acoustic properties of the sea bed using chirp sonar data. IEEE Journal of Oceanic Engineering, 29(4):1200-1217, doi:10.1109/JOE.2004.841421. Stoll R D. 1998. Comments on "Biot model of sound propagation in water-saturated sand"[J. Acoust. Soc. Am. 97, 199-214 (1995)]. Journal of the Acoustical Society of America, 103(5):2723-2725, doi:10.1121/1.422791. Wang J Q, Guo C S, Li H Y. 2013. The experimental study of in situ acoustic measurement system in Jiaozhou bay. Periodical of Ocean University of China (in Chinese), 43(3):75-80. Wang J Q, Li G B, Liu B H, et al. 2018. Experimental study of the ballast in situ sediment acoustic measurement system in south China sea. Marine Georesources & Geotechnology, 36(5):515-521, doi:10.1080/1064119X.2017.1348413. Williams K L, Jackson D R, Thorsos E I, et al. 2002. Comparison of sound speed and attenuation measured in a sandy sediment to predictions based on the Biot theory of porous media. IEEE Journal of Oceanic Engineering, 27(3):413-428, doi:10.1109/JOE.2002.1040928. Yang J, Tang D J. 2017. Direct measurements of sediment sound speed and attenuation in the frequency band of 2-8 kHz at the target and reverberation experiment site. IEEE Journal of Oceanic Engineering, 42(4):1102-1109, doi:10.1109/JOE.2017.2714722. Yu S Q, Huang Y W, Wu Q. 2014. Bottom parameters inversion based on reflection model of effective density fluid approximation. Acta Acustica (in Chinese), 39(4):417-427. Zhou F N, Zhao J H, Zhou C Y. 2001. Determination of classic experiential sound speed formulae in multibeam echo sounding system. Journal of Oceanography in Taiwan Strait (in Chinese), 20(4):411-419. Zhu Z Y, Wang D, Zhou J P, et al. 2012. Acoustic wave dispersion and attenuation in marine sediment based on partially gas-saturated Biot-Stoil model. Chinese Journal of Geophysics (in Chinese), 55(1):180-188, doi:10.6038/j.issn.0001-5733.2012.01.017 Zou D P, Lu B, Yan P, et al. 2012. Three kinds of acoustic speeds of seafloor sediments in the northern South China Sea with temperature variation. Chinese Journal of Geophysics (in Chinese), 55(3):1017-1024, doi:10.6038/j.issn.0001-5733.2012.03.032. Zou D P. 2018. Relationship between the sound speed ratio of the compressional wave and the physical characteristics of seafloor sediments. Acta Acustica (in Chinese), 43(1):41-51. 附中文参考文献 Jackson D R, Richardson M D. 2014. 高频海底声学. 刘保华, 阚光明, 李官保等译. 北京:海洋出版社. 陈瀚, 丘学林, 贺恩远等. 2019. 深渊着陆器坐底位置的精确测量和反演计算. 地球物理学报, 62(5):1744-1754, doi:10.6038/cjg2019M0009. 郭常升, 窦玉坛, 谷明峰. 2007. 海底底质声学性质原位测量技术研究. 海洋科学, 31(8):6-10. 侯正瑜, 郭常升, 王景强等. 2015. 一种新型海底沉积物声学原位测量系统的研制及应用. 地球物理学报, 58(6):1976-1984, doi:10.6038/cjg20150613. 胡高伟, 业渝光, 张剑等. 2012. 基于弯曲元技术的含水合物松散沉积物声学特性研究. 地球物理学报, 55(11):3762-3773, doi:10.6038/j.issn.0001-5733.2012.11.023. 阚光明, 刘保华, 韩国忠等. 2010. 原位测量技术在黄海沉积声学调查中的应用. 海洋学报, 32(3):88-94. 阚光明, 邹大鹏, 刘保华等. 2012. 便携式海底沉积声学原位测量系统研制及应用. 热带海洋学报, 31(4):135-139. 李凡, 郭新毅, 张毅等. 2014. 水下声传播的发展及其应用. 物理, 43(10):658-666. 李官保, 阚光明, 孟祥梅等. 2013. 环境条件变化对海底沉积物实验室声速测量结果的影响. 海洋科学进展, 31(3):360-366. 李红星. 2008. 杭州湾沉积物原位声学特性分析及浅表低速层研究[博士论文]. 长春:吉林大学. 李整林, 王耀俊, 马力等. 2000. 海底沉积物参数对浅海中低频声传播的影响. 声学学报, 25(3):242-247. 王景强, 郭常升, 李会银. 2013. 声学原位测量系统在胶州湾的测量试验研究. 中国海洋大学学报, 43(3):75-80. 于盛齐, 黄益旺, 吴琼. 2014. 基于等效密度流体近似反射模型反演海底参数. 声学学报, 39(4):417-427. 周丰年, 赵建虎, 周才扬. 2001. 多波束测深系统最优声速公式的确定. 台湾海峡, 20(4):411-419. 朱祖扬, 王东, 周建平等. 2012. 基于非饱和Biot-Stoll模型的海底沉积物介质声频散特性研究. 地球物理学报, 55(1):180-188, doi:10.6038/j.issn.0001-5733.2012.01.017. 邹大鹏, 卢博, 阎贫等. 2012. 南海北部海底沉积物在温度变化下的三种声速类型. 地球物理学报, 55(3):1017-1024, doi:10.6038/j.issn.0001-5733.2012.03.032. 邹大鹏. 2018. 海底沉积物压缩波声速比与物理特性的关系. 声学学报, 43(1):41-51.