SHI XiaoBin,
WANG LiFang,
REN ZiQiang et al
.2020.Cenozoic tectono-thermal evolution features and influence factors of the Liyue basin, South China Sea Chinese Journal of Geophysics(in Chinese),63(7): 2682-2696,doi: 10.6038/cjg2020N0409
Cenozoic tectono-thermal evolution features and influence factors of the Liyue basin, South China Sea
SHI XiaoBin1,2,3, WANG LiFang4,5, REN ZiQiang1,6, PEI JianXiang4,5, SHEN YongQiang1,6, SHI DeFeng4,5, LIU Kui1,6, ZHAO Peng1,6, YAN AnJü4,5
1. Key Laboratory of Ocean and Marginal Sea Geology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; 2. Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China; 3. Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou), Guangzhou 510301, China; 4. Hainan Energy Ltd. of CNOOC, Haikou Hainan 570100, China; 5. Zhanjiang Branch of CNOOC Ltd., Zhanjiang Guangdong 524057, China; 6. University of Chinese Academy of Science, Beijing 100049, China
Abstract:To further understand the Cenozoic thermal regime of the Liyue Basin, based on crustal stretching factor analyses, we used a numerical model of coupled geothermal processes, lithosphere thinning and depositional processes to reconstruct the tectono-thermal evolutional histories of eight backbone profiles in the Liyue basin, and analyzed the thermal evolution features in the main structural units and their influence factors. The results show that, Liyue basin was greatly extended and thinned during the synrift phase, and the crustal stretching factors are generally larger than 1.8 in most regions of its sags; During the synrift phase, heat flow increased generally with time, and at the end of the synrift phase, seafloor heat flow were as high as about 70~80 mW·m-2, and heat flow in basement high regions was generally higher than heat flow in sag regions. During the postrift phase, due to deposition and thermal relaxation, heat flow decreased gradually to 65~70 mW·m-2 at present in the regions where reef bodies were not developed continuously, while in the SW and NW regions of the basin, heat flow becomes higher due to recent magmatic intrusion. Seafloor heat flow and thermal gradient in reef body developing areas are quite low, and even negative due to heat exchange between the upper part of reef bodies and the surrounding low temperature seawater. Further analyses suggest that, the thermal regime of the Liyue basin results mainly from intense lithospheric thinning, and other local influence factors such as recent magmatic intrusion, basement topography, sedimentation and seafloor topography. In addition, the thermal regime in the reef body developing area has been influenced greatly by the heat exchange between the upper part of reef bodies and the surrounding low temperature seawater. The oil and gas threshold depth and temperature are 2000~2500 mbsf and 90~110 ℃ in the central regions of the sags, respectively, which are slightly larger than the threshold depth and temperature in the surrounding basement rise area. In the reef body developing area, due to the heat exchange between overlying reef bodies and surrounding seawater, the thermal maturity of the underlying source rocks is much lower, and the oil and gas threshold depth are obviously larger than the threshold depth in the central regions of the sags.
Aurelio M A, Forbes M T, Taguibao K J L, et al. 2014. Middle to Late Cenozoic tectonic events in south and central Palawan (Philippines) and their implications to the evolution of the south-eastern margin of South China Sea:Evidence from onshore structural and offshore seismic data. Marine and Petroleum Geology, 58:658-673. Braitenberg C, Wienecke S, Wang Y. 2006. Basement structures from satellite-derived gravity field:South China Sea ridge. Journal of Geophysical Research:Solid Earth, 111(B5):B05407, doi:10.1029/2005jb003938. Buntebarth G. 1984. Geothermics:An Introduction. Berlin:Springer-Verlag, 9-21. Burnham A K. 2019. Kinetic models of vitrinite, kerogen, and bitumen reflectance. Organic Geochemistry, 131:50-59. Chen A H, Xu X, Luo X H, et al. 2017. Heat flow characteristics and controlling factors of the Baikang Basin in South China Sea. Acta Geologica Sinica (in Chinese), 91(8):1720-1728. Clift P, Lin J, Barckhausen U. 2002. Evidence of low flexural rigidity and low viscosity lower continental crust during continental break-up in the South China Sea. Marine and Petroleum Geology, 19(8):951-970. Ding W W, Li J B, Dong C Z, et al. 2015. Oligocene-Miocene carbonates in the Reed Bank area, South China Sea, and their tectono-sedimentary evolution. Marine Geophysical Research, 36(2-3):149-165. Dong M, Zhang J, Wu S G, et al. 2019. Cooling of the lithosphere beneath the Nansha Block, South China Sea. Journal of Asian Earth Sciences, 171:169-177. Duan L, Pei J X, Zhang Y Z, et al. 2018. Tectonic characteristics of extensional detachment basin in southern South China Sea. Marine Origin Petroleum Geology (in Chinese), 23(4):71-80. Fang P G, Ding W W, Fang Y X, et al. 2015. Development of carbonate platform and its response to Cenozoic tectonic in Reed Bank area, the South China Sea. Earth Science-Journal of China University of Geosciences (in Chinese), 40(12):2052-2066. Feng C M, Wang J H, Xie X N, et al. 2015. Thermal evolution of source rocks and contributing factors of the northern and southern continental marginal basins in the South China Sea. Geoscience (in Chinese), 29(1):97-108. He L J, Wang K L, Xiong L P, et al. 2001. Heat flow and thermal history of the South China Sea. Physics of the Earth and Planetary Interiors, 126(3-4):211-220. Li J B ed. 2008. Evolution of China's Marginal Seas and Its Effect of Natural Resources (in Chinese). 2nd ed. Beijing:Ocean Press, 52-68. Li Y M, Shi X B, Xu H L, et al. 2012. Temporal and spatial distribution of tectonic subsidence and discussion on formationmechanism of anomalous post-rift tectonic subsidence in theQiongdongnan Basin. Journal of Jilin University (Earth Science Edition) (in Chinese), 42(1):47-57, 65. Liu Q Y, He L J. 2015. Discussion on several problems in tectono-thermal modeling of rift basins. Chinese Journal of Geophysics (in Chinese), 58(2):601-612, doi:10.6038/cjg20150222. Liu Y Q, Wu Z P, Zhang J, et al. 2018. Structural evolution of the Liyue basin in Southern South China Sea and its response to the regional geological background. Acta Geologica Sinica (in Chinese),92(9):1766-1779. McKenzie D. 1978. Some remarks on the development of sedimentary basins. Earth and Planetary Science Letters, 40(1):25-32. Nissen S S, Hayes D E, Buhl P, et al. 1995. Deep penetration seismic soundings across the northern margin of the South China Sea. Journal of Geophysical Research:Solid Earth, 100(B11):22407-22433. Pei J X, Shi X B, Wang L F, et al. 2020. Tectonic subsidence features and their mechanism analyses in the Liyue Basin, South China Sea. Marine Geology & Quaternary Geology (in Chinese), accepted. Pichot T, Delescluse M, Chamot-Rooke N, et al. 2014. Deep crustal structure of the conjugate margins of the SW South China Sea from wide-angle refraction seismic data. Marine and Petroleum Geology, 58:627-643. Qiu X L, Zhao M H, Ao W, et al. 2011. OBS survey and crustal structure of the Southwest Sub-basin and Nansha Block, South China Sea. Chinese Journal of Geophysics (in Chinese), 54(12):3117-3128, doi:10.3969/j.issn.0001-5733.2011.12.012. Rüpke L, Schmalholz S, Schmid D, et al. 2008. Automated the rmotectonos tratigraphic basin reconstruction:Viking Graben case study. AAPG Bulletin, 92(3):309-326. Ruan A G, Niu X W, Qiu X L, et al. 2011. A wide angle ocean bottom seismometer profile across Liyue Bank, the southern margin of South China Sea. Chinese Journal of Geophysics (in Chinese), 54(12):3139-3149, doi:10.3969/j.issn.0001-5733.2011.12.014. Sclater J G, Christie P A F. 1980. Continental stretching:an explanation of the post-mid-cretaceous subsidence of the central North Sea Basin. Journal of Geophysical Research:Solid Earth, 85(B7):3711-3739. Shi X B, Qiu X L, Xia K Y, et al. 2003. Characteristics of surface heat flow in the South China Sea. Journal of Asian Earth Sciences, 22(3):265-277. Shi X B, Wang Z F, Jiang H Y, et al. 2015. Vertical variations of geothermal parameters in rifted basins and heat flow distribution features of the Qiongdongnan Basin. Chinese Journal of Geophysics (in Chinese), 58(3):939-952, doi:10.6038/cjg20150320. Shi X B, Jiang H Y, Yang J, et al. 2017. Models of the rapid post-rift subsidence in the eastern Qiongdongnan Basin, South China Sea:implications for the development of the deep thermal anomaly. Basin Research, 29(3):340-362. Shi X B, Yu C H, Chen M, et al. 2017. Analyses of variation features and influential factors of heat flow in the northern margin of the South China Sea. Earth Science Frontiers (in Chinese), 24(3):56-64. Shi Z Q, Xie Y H, Liu L, et al. 2016. Sedimentology of Carbonate Bioherm Reservoir in Well Xike-1, South China Sea-Reservoir Characteristics and Diagenetic Evolution. Wuhan:China University of Geosciences Press, 147-167. Steuer S, Franke D, Meresse F, et al. 2013. Time constraints on the evolution of southern Palawan Island, Philippines from onshore and offshore correlation of Miocene limestones. Journal of Asian Earth Sciences, 76:412-427. Steuer S, Franke D, Meresse F, et al. 2014. Oligocene-Miocene carbonates and their role for constraining the rifting and collision history of the Dangerous Grounds, South China Sea. Marine and Petroleum Geology, 58:644-657. Su D Q, Liu Y L, Chen X, et al. 2004. 3D Moho depth of the South China Sea.//Zhang Z J, Gao R, Lv Q T eds. Earths Deep Structure and Dynamic Researches of the Mainland China (in Chinese). Beijing:Science Press, 357-365. Sun L T, Sun Z, Zhan W H, et al. 2010. Petroleum potential prediction of the Lile Basin in Nansha. Earth Science-Journal of China University of Geosciences (in Chinese), 35(1):137-145. Sweeney J J, Burnham A K. 1990. Evaluation of a simple model of vitrinite reflectance based on chemical kinetics (1). AAPG Bulletin, 74(10):1559-1570. Tang X Y, Chen L, Hu S B, et al. 2014. Tectono-thermal evolution of the Reed Bank Basin, Southern South China Sea. Journal of Asian Earth Sciences, 96:344-352. Taylor B, Hayes D E. 1980. The tectonic evolution of the South China Basin.//Hayes D E ed. The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands. Washington D C:Geophysical Monograph Series, 23:89-104. Taylor B, Hayes D E. 1983. Origin and history of the South China Sea basin.//Hayes D E ed. The tectonic and geologic evolution of Southeast Asian Seas and Islands:Part 2. Washington D C:Geophysical Monograph Series, 27:23-56. Wang L F, Shi X B, Ren Z Q, et al. 2020. Tectono-thermal evolution features of the reef body developing area in the Liyue Basin, Southern South China Sea. Chinese Journal of Geophysics (in Chinese), accepted. Wang Z F, Shi X B, Yang J, et al. 2014. Analyses on the tectonic thermal evolution and influence factors in the deep-water Qiongdongnan Basin. Acta Oceanologica Sinica, 33(12):107-117. White N, Bellingham P. 2002. A two-dimensional inverse model for extensional sedimentary basins 1. Theory. Journal of Geophysical Research:Solid Earth, 107(B10):2259, doi:10.1029/2001JB000173. White N, Thompson M, Barwise T, 2003. Understanding the thermal evolution of deep-water continental margins. Nature, 426(6964):334-343. Wu Z P, Liu Y Q, Zhang J, et al. 2018. Cenozoic characteristics and evolution of fault systems in the Liyue Basin, South China Sea. Earth Science Frontiers (in Chinese), 25(2):221-231. Xie X J, Zhang G C, Liu S X, et al. 2015. Discussion the pre-drifting position of the Liyue basin. Science Technology and Engineering (in Chinese), 15(2):8-13. Xu X, Yao Y J, Peng D, et al. 2018. The characteristics and analysis of heat flow in the Southwest sub-basin of South China Sea. Chinese Journal of Geophysics (in Chinese), 61(7):2915-2925, doi:10.6038/cjg2018L0223. Yang S C, Tong Z G, Hao J R, et al. 2009. Tectono-thermal modeling of Lile basin, southern South China Sea. Geotectonica et Metallogenia (in Chinese), 33(3):359-364. Yao Y J, Liu H L, Yang C P, et al. 2012. Characteristics and evolution of Cenozoic sediments in the Liyue Basin, SE South China Sea. Journal of Asian Earth Sciences, 60:114-129. Zhang G C, Zhu W L, Mi L J, et al. 2010. The theory of hydrocarbon genernation controlled by source rock and heat from circle distribution of outside-oil fields and inside-gas fields in South China Sea. Acta Sedimentologica Sinica (in Chinese), 28(5):987-1005. Zhang Y Z, Li J L, Pei J X, et al. 2018. Development conditions and seismic characteristics of the Cenozoic reef in the deepwater area of Liyue Basin, southern South China Sea. Marine Geology & Quaternary Geology (in Chinese), 38(6):108-117. Zhao C Y, Song H B, Yang Z W, et al. 2014. Tectonic and thermal evolution modeling for the marginal basins of the southern South China Sea. Chinese Journal of Geophysics (in Chinese),57(5):1543-1553, doi:10.6038/cjg20140518. 附中文参考文献 陈爱华, 徐行, 罗贤虎等. 2017. 南海北康盆地热流分布特征及其构造控制因素探讨. 地质学报, 91(8):1720-1728. 段亮, 裴健翔, 张亚震等. 2018. 南海南部裂离型盆地构造特征. 海相油气地质, 23(4):71-80. 方鹏高, 丁巍伟, 方银霞等. 2015. 南海礼乐滩碳酸盐台地的发育及其新生代构造响应. 地球科学-中国地质大学学报, 40(12):2052-2066. 冯常茂, 王后金, 解习农等. 2015. 南海南、北大陆边缘盆地烃源岩热演化差异及成因分析. 现代地质, 29(1):97-108. 李家彪主编. 2008. 中国边缘海形成演化与资源效应. 2版. 北京:海洋出版社, 52-68. 李亚敏, 施小斌, 徐辉龙等. 2012. 琼东南盆地构造沉降的时空分布及裂后期异常沉降机制. 吉林大学学报(地球科学版), 42(1):42-57, 65. 刘琼颖, 何丽娟. 2015. 裂谷盆地构造-热演化模拟中几个问题的讨论. 地球物理学报, 58(2):601-612, doi:10.6038/cjg20150222. 刘雨晴, 吴智平, 张杰等. 2018. 南海南部礼乐盆地结构演化及其对区域地质背景的响应. 地质学报, 92(9):1766-1779. 裴健翔, 施小斌, 王丽芳等. 2020. 南海礼乐盆地新生代构造沉降特征及其成因分析. 海洋地质与第四纪地质, 录用. 丘学林, 赵明辉, 敖威等. 2011. 南海西南次海盆与南沙地块的OBS探测和地壳结构. 地球物理学报, 54(12):3117-3128, doi:10.3969/j.issn.0001-5733.2011.12.012. 阮爱国, 牛雄伟, 丘学林等. 2011. 穿越南沙礼乐滩的海底地震仪广角地震试验. 地球物理学报, 54(12):3139-3149, doi:10.3969/j.issn.0001-5733.2011.12.014. 施小斌, 王振峰, 蒋海燕等. 2015. 张裂型盆地地热参数的垂向变化与琼东南盆地热流分布特征. 地球物理学报, 58(3):939-952, doi:10.6038/cjg20150320. 施小斌, 于传海, 陈梅等. 2017. 南海北部陆缘热流变化特征及其影响因素分析. 地学前缘, 24(3):56-64. 时志强, 谢玉洪, 刘立. 2016. 南海西科1井碳酸盐岩生物礁储层沉积学:储层特征与成岩演化. 武汉:中国地质大学出版社, 147-167. 苏达权, 刘元龙, 陈雪等. 2004. 南海的三维莫霍界面.//张中杰, 高锐, 昌庆田等. 中国大陆地球深部结构与动力学研究. 北京:科学出版社, 357-365. 孙龙涛, 孙珍, 詹文欢等. 2010. 南沙海域礼乐盆地油气资源潜力. 地球科学-中国地质大学学报, 35(1):137-145. 王丽芳, 施小斌, 任自强等. 2020. 南海南部礼乐盆地礁体发育区的构造热演化特征. 地球物理学报, 接收. 吴智平, 刘雨晴, 张杰等. 2018. 中国南海礼乐盆地新生代断裂体系的发育与演化. 地学前缘, 25(2):221-231. 谢晓军, 张功成, 刘世翔等. 2015. 礼乐盆地漂移前的位置探讨. 科学技术与工程, 15(2):8-13. 徐行, 姚永坚, 彭登等. 2018. 南海西南次海盆的地热流特征与分析. 地球物理学报, 61(7):2915-2925, doi:10.6038/cjg2018L0223. 杨树春, 仝志刚, 郝建荣等. 2009. 南海南部礼乐盆地构造热演化研究. 大地构造与成矿学, 33(3):359-364. 张功成, 朱伟林, 米立军等. 2010. "源热共控论":来自南海海域油气田"外油内气"环带有序分布的新认识. 沉积学报, 28(5):987-1005. 张亚震, 李俊良, 裴健翔等. 2018. 礼乐盆地深水区新生代生物礁的发育条件与地震特征. 海洋地质与第四纪地质, 38(6):108-117. 赵长煜, 宋海斌, 杨振武等. 2014. 南海南部边缘沉积盆地构造-热演化历史. 地球物理学报, 57(5):1543-1553, doi:10.6038/cjg20140518.