李倩倩,
鲍李峰,
C. K. Shum
.2020.利用海洋重力场变化分析洋底板块运动. 地球物理学报,63(7): 2506-2515,doi: 10.6038/cjg2020N0436
LI QianQian,
BAO LiFeng,
C. K. Shum
.2020.Altimeter-derived marine gravity variation studies the submarine plate tectonic motions Chinese Journal of Geophysics(in Chinese),63(7): 2506-2515,doi: 10.6038/cjg2020N0436
Altimeter-derived marine gravity variation studies the submarine plate tectonic motions
LI QianQian1,2, BAO LiFeng1,2, C. K. Shum3
1. State Key Laboratory of Geodesy and Earth's Dynamics, Institute of Geodesy and Geophysics, Chinese Academy of Sciences, Wuhan 430077, China; 2. University of the Chinese Academy of Sciences, Beijing 100049, China; 3. Division of Geodetic Science, School of Earth Sciences, The Ohio State University, Columbus, Ohio 43210, USA
Abstract:Submarine plate tectonic motions are important part of geodynamics and global change. In this paper, based on the correspondence between mass migration and change of the earth's external gravity field, global marine gravity field variations from 1995 to 2019 calculated by the altimetry data of different periods are used to analyze the submarine plate motion characteristics. The results show that the gravity anomalies change significantly at plate convergent boundaries, aseismic ridges, seamount groups and fault zones, but not at plate divergent boundaries. The vertical gravity gradients vary significantly in the Southwest Indian Ridge, Atlantic ridge and Middle Indian Ridge, as well as in the subduction zone of the western Pacific Ocean and some aseismic ridges, which spatial distributions are basically consistent with the terrain. The marine gravity field variations accurately reflected the submarine plate tectonic characteristics on the whole. Compared with gravity anomalies, vertical gravity gradient variations can more demonstrably reflect the submarine plate motions, especially in the mid-ocean ridge. The smaller the spreading rate is, the more significant the vertical gravity gradient variation is. In addition, the effects of the gravity field uncertainties on the results are discussed emphatically, the surface slope correction is one of the major factors.
Altamimi Z, Rebischung P, Métivier L, et al. 2016. ITRF2014:a new release of the international terrestrial reference frame modeling nonlinear station motions. Journal of Geophysical Research:Solid Earth, 121(8):6109-6131, doi:10.1002/2016JB013098. Andersen O B, Knudsen P, Berry P A M. 2010. The DNSC08GRA global marine gravity field from double retracked satellite altimetry. Journal of Geodesy, 84(3):191-199, doi:10.1007/s00190-009-0355-9. Andersen O B, Knudsen P, Kenyon S, et al, 2019. Evaluation of the Global Altimetric Marine Gravity Field DTU15:Using Marine Gravity and GOCE Satellite Gravity.//Freymueller J T, Sánchez L eds. International Symposium on Advancing Geodesy in a Changing World. Cham:Springer, 77-81, doi:10.1007/1345_2018_52. Argus D F, Gordon R G, DeMets C. 2011. Geologically current motion of 56 plates relative to the no-net-rotation reference frame. Geochemistry, Geophysics, Geosystems, 12(11):Q11001, doi:10.1029/2011GC003751. Ballard R D, Van Andel T H. 1977. Morphology and tectonics of the inner rift valley at lat 36°50'N on the Mid-Atlantic Ridge. GSA Bulletin, 88(4):507-530, doi:10.1130/0016-7606(1977)88〈507:MATOTI〉2.0.CO;2. Bercovici D. 2003. The generation of plate tectonics from mantle convection. Earth and Planetary Science Letters, 205(3-4):107-121, doi:10.1016/s0012-821x(02)01009-9. Bettinelli P, Avouac J P, Flouzat M, et al. 2006. Plate motion of India and interseismic strain in the Nepal Himalaya from GPS and DORIS measurements. Journal of Geodesy, 80(8-11):567-589, doi:10.1007/s00190-006-0030-3. Brenner A C, Blndschadler R A, Thomas R H, et al. 1983. Slope-induced errors in radar altimetry over continental ice sheets. Journal of Geophysical Research:Oceans, 88(C3):1617-1623, doi:10.1029/JC088iC03p01617. Brown G. 1977. The average impulse responce of a rough surface and its applications. IEEE Journal of Oceanic Engineering, 2(1):67-74, doi:10.1109/JOE.1977.1145328. DeMets C, Gordon R G, Argus D F. 2010. Geologically current plate motions. Geophysical Journal International, 181(1):1-80, doi:10.1111/j.1365-246X.2009.04491.x. Dick H J B, Jian L, Hans S. 2003. An ultraslow-spreading class of ocean ridge. Nature, 426(6965):405-412, doi:10.1038/nature02128. Fairhead J D, Green C M, Odegard M E. 2001. Satellite-derived gravity having an impact on marine exploration. The Leading Edge, 20(8):873-876, doi:10.1190/1.1487298. Gripp A E, Gordon R G. 2002. Young tracks of hotspots and current plate velocities. Geophysical Journal International, 150(2):321-361, doi:10.1046/j.1365-246X.2002.01627.x. Hao T Y, Huang S, Xu Y, et al. 2008. Comprehensive geophysical research on the deep structure of Northeastern South China Sea. Chinese Journal of Geophysics (in Chinese), 51(6):1785-1796. Hwang C, Chang E T Y. 2014. Seafloor secrets revealed. Science, 346(6205):32-33, doi:10.1126/science.1260459. Jin S G, Zhu W Y. 2003. Quantitative analysis of the slowing expansion in the Southern Hemisphere. Chinese Journal of Geophysics (in Chinese), 46(6):760-766. Kraszewska K. 2006. Determination of tectonic plate motion by the SLR (Satellite Laser Ranging) and GPS (Global Positioning System) techniques.//Proceedings of SPIE 6159, Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments IV. Wilga, Poland:SPIE, U1590, doi:10.1117/12.675037. Le Pichon X. 1968. Sea-floor spreading and continental drift. Journal of Geophysical Research, 73(12):3661-3697, doi:10.1029/JB073i012p03661. Le Pichon X, Heirtzler J R. 1968. Magnetic anomalies in the Indian Ocean and sea-floor spreading. Journal of Geophysical Research, 73(6):2101-2117, doi:10.1029/jb073i006p02101. Li J B, Ding W W, Gao J Y, et al. 2011. Cenozoic evolution model of the sea-floor spreading in South China Sea:new constraints from high resolution geophysical data. Chinese Journal of Geophysics (in Chinese), 54(12):3004-3015, doi:10.3969/j.issn.0001-5733.2011.12.003. Liang Y Y. 2014. The Magmato-tectonic Dynamic Model of the Central Southwest Indian Ridge(49°~51°E)-Research from fine Bathymetry Data (in Chinese). Beijing:Institute of Oceanology, Chinese Academy of Sciences. Lundgren P, Saucier F, Palmer R, et al. 1995. Alaska crustal deformation:finite element modeling constrained by geologic and very long baseline interferometry data. Journal of Geophysical Research:Solid Earth, 100(B11):22033-22045, doi:10.1029/95jb00237. Okubo S. 2010. Potential and gravity changes raised by point dislocations. Geophysical Journal International, 105(3):573-586, doi:10.1111/j.1365-246X.1991.tb00797.x. Prawirodirdjo L, Bock Y. 2004. Instantaneous global plate motion model from 12 years of continuous GPS observations. Journal of Geophysical Research:Solid Earth, 109(B8):B08405, doi:10.1029/2003JB002944. Ren J Y. 2008. An Introduction to Ocean Floor Tectonics (in Chinese). Wuhan:China University of Geosciences Press. Sandwell D T, Smith W H F. 2009. Global marine gravity from retracked Geosat and ERS-1 altimetry:Ridge segmentation versus spreading rate. Journal of Geophysical Research:Solid Earth, 114(B1):B01411, doi:10.1029/2008jb006008. Sandwell D T, Smith W H F. 2014. Slope correction for ocean radar altimetry. Journal of Geodesy, 88(8):765-771, doi:10.1007/s00190-014-0720-1. Sandwell D T, Harper H, Tozer B, et al. 2019. Gravity field recovery from geodetic altimeter missions. Advances in Space Research, doi:10.1016/j.asr.2019.09.011. Sandwell D T, Müller R D, Smith W H F, et al. 2014. New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure. Science, 346(6205):65-67, doi:10.1126/science.1258213. Sauter D, Cannat M, Rouméjon S, et al. 2013. Continuous exhumation of mantle-derived rocks at the Southwest Indian Ridge for 11 million years. Nature Geoscience, 6(4):314-320, doi:10.1038/ngeo1771. Shen Z K, Zhao C K, Yin A, et al. 2000. Contemporary crustal deformation in east Asia constrained by Global Positioning System measurements. Journal of Geophysical Research:Solid Earth, 105(B3):5721-5734, doi:10.1029/1999jb900391. Smith D. 2013. Mantle spread across the sea floor. Nature Geoscience, 6(4):247-248, doi:10.1038/ngeo1786. Smith W H F. 1998. Seafloor tectonic fabric from satellite altimetry. Annual Review of Earth and Planetary Sciences, 26:697-747, doi:10.1146/annurev.earth.26.1.697. Sun W K, Okubo S, Vaníček P. 1996. Global displacements caused by point dislocations in a realistic Earth model. Journal of Geophysical Research:Solid Earth, 101(B4):8561-8577, doi:10.1029/95jb03536. Wessel P. 2001. Global distribution of seamounts inferred from gridded Geosat/ERS-1 altimetry. Journal of Geophysical Research:Solid Earth, 106(B9):19431-19441, doi:10.1029/2000jb000083. Zhang S J, Sandwell D T. 2016. Retracking of SARAL/AltiKa radar altimetry waveforms for optimal gravity field recovery. Marine Geodesy, 40(1):40-56, doi:10.1080/01490419.2016.1265032. 附中文参考文献 郝天珧, 黄松, 徐亚等. 2008. 南海东北部及邻区深部结构的综合地球物理研究. 地球物理学报, 51(6):1785-1796. 金双根, 朱文耀. 2003. 南半球减速膨胀的定量分析. 地球物理学报, 46(6):760-766. 李家彪, 丁巍伟, 高金耀等. 2011. 南海新生代海底扩张的构造演化模式:来自高分辨率地球物理数据的新认识. 地球物理学报, 54(12):3004-3015, doi:10.3969/j.issn.0001-5733.2011.12.003. 梁裕扬. 2014. 西南印度洋脊中段岩浆——构造动力学模式(49°~51°E)-来自精细地形数据的研究[博士论文]. 北京:中国科学院大学. 任建业. 2008. 海洋底构造导论. 武汉:中国地质大学出版社.