LIU YanJiang,
LIU CaiCai,
ZHANG ZhuQi et al
.2020.Rock magnetic studies of fault rocks from the Laohushan segment of the Haiyuan fault zone and its tectonic implications Chinese Journal of Geophysics(in Chinese),63(6): 2311-2328,doi: 10.6038/cjg2020N0109
Rock magnetic studies of fault rocks from the Laohushan segment of the Haiyuan fault zone and its tectonic implications
LIU YanJiang1, LIU CaiCai1, ZHANG ZhuQi1, LIU Kang1, REN ZhiKun2, ZHANG HuiPing1, LI ChuanYou2, XU HongYan1, LI XueMei1
1. State Key Laboratory of Earthquake Dynamics, Institute of Geology, China Earthquake Administration, Beijing 100029, China; 2. Key Laboratory of Active Tectonics and Volcano, Institute of Geology, China Earthquake Administration, Beijing 100029, China
Abstract:Fault rocks, especially fault gouge, have recently attracted more and more interests of researchers, but formation mechanism of its magnetic abnormality has not been decided yet. Outcrops of fault rocks with a thickness of several meters to a dozens of meters, has been found on the Jingtai segment of Haiyuan Fault. These fault rocks are good research materials. A fault rock profile in Laohushan mountain of the Jingtai segment has been investigated in this study. Magnetic susceptibility (χ), anhysteresis remanent magnetization (ARM), saturation isothermal remanent magnetization (SIRM), isothermal remanent magnetization (IRM) and magnetic susceptibility versus temperature curve (χ-T curve) and other magnetic parameters combined with particle size, carbon content and XRD analyses have conducted on the fault rocks to explore the formation mechanism and tectonic implication of different colored fault rocks in the Laohushan section of the Haiyuan fault zone. Rock magnetic results show that red, black, and variegated fault gouge show low magnetic susceptibility compared with the surrounding rock and fracture zone, especially the black fault gouge with a mean magnetic susceptibility of less than 10×10-8 m3·kg-1. The thermalmagnetic results combined with carbon content and mineral phase analyses indicate that the black fault gouge has a similar mineral composition to the Carboniferous coal near the fault zone. It is inferred that the Carboniferous coal is the parent rock of the black fault gouge. The Carboniferous coal was involved into the fault zone by active fault, and was continuously grinded under the strong shearing and friction of the fault, forming clay minerals such as illite and promoting the chemical transformation of a part of the paramagnetic iron-containing silicate mineral or other iron-containing minerals. This makes the magnetic susceptibility higher in the black fault gouge compared with the diamagnetism of their parent rock, the carbon layer. The maximum temperature is about 420 ℃, absolutely no more than 450 ℃, when the black fault gouge was formed, calculated from comparing the ferri-χ of the gouge with the χ-T curve of the coal. The presence of this high-carbon and thick fault gouge may be related to the shallow creep phenomenon on this fault.
Cavalié O, Lasserre C, Doin M P, et al. 2008. Measurement of interseismic strain across the Haiyuan fault (Gansu, China), by InSAR. Earth and Planetary Science Letters, 275(3-4):246-257. Chou Y M, Song S R, Aubourg C, et al. 2012a. An earthquake slip zone is a magnetic recorder. Geology, 40(6):551-554. Chou Y M, Song S R, Aubourg C, et al. 2012b. Pyrite alteration and neoformed magnetic minerals in the fault zone of the Chi-Chi earthquake (MW7.6, 1999):Evidence for frictional heating and co-seismic fluids. Geochemistry, Geophysics, Geosystems, 13(8):Q08002, doi:10.1029/2012GC004120. Dearing J. 1994. Environmental Magnetic Susceptibility Using the Bartington MS2 System. Lincoln:Chi. Deng C, Zhu R, Jackson M J, et al. 2001. Variability of the temperature-dependent susceptibility of the Holocene Eolian deposits in the Chinese loess plateau:A pedogenesis indicator. Physics and Chemistry of the Earth, Part A:Solid Earth and Geodesy, 26(11-12):873-878. Deng C L, Zhu R X, Verosub K L, et al. 2004. Mineral magnetic properties of loess/paleosol couplets of the central loess plateau of China over the last 1.2 Myr. Journal of Geophysical Research:Solid Earth, 109(B1):B01103, doi:10.1029/2003JB002532. Deng C L. 2008. Paleomagnetic and mineral magnetic investigation of the Baicaoyuan loess-paleosol sequence of the western Chinese Loess Plateau over the last glacial-interglacial cycle and its geological implications. Geochemistry, Geophysics, Geosystems, 9(4):Q04034, doi:10.1029/2007GC001928. Deng Q D, Chen S F, Song F N, et al. 1986. Variations in the geometry and amount of slip on the Haiyuan (Nanxihaushan) fault zone, China and the surface rupture of the 1920 Haiyuan earthquake.//Das S, Boatwright J, Scholz C H eds. Earthquake Source Mechanics. Washington:American Geophysical Union, 169-182. doi:10.1029/GM037p0169. Deng Q D, Zhang P Z, Ran Y K, et al. 2003. Basic characteristics of active tectonics of China. Science in China Series D:Earth Sciences, 46(4):356-372. Deng Q D, Ran Y K, Yang X P, et al. 2007. Map of Active Tectonics in China (scale 1:4000000) (in Chinese). Beijing:Seismological Press. Duan Q B, Yang X S, Ma S L, et al. 2016. Fluid-rock interactions in seismic faults:Implications from the structures and mineralogical and geochemical compositions of drilling cores from the rupture of the 2008 Wenchuan earthquake, China. Tectonophysics, 666:260-280. Dunlop D J, Özdemir Ö. 1997. Rock Magnetism:Fundamentals and Frontiers. Cambridge:Cambridge University Press, 573. Evans M E, Heller F. 2003. Environmental Magnetism:Principles and Applications of Enviromagnetics. Amsterdam:Academic, 299. French M E, Chester F M, Chester J S. 2015. Micromechanisms of creep in clay-rich gouge from the Central Deforming Zone of the San Andreas Fault. Journal of Geophysical Research, 120(2):827-849, doi:10.1002/2014JB011496. Gaudemer Y, Tapponnier P, Meyer B, et al. 1995. Partitioning of crustal slip between linked, active faults in the eastern Qilian Shan, and evidence for a major seismic gap, the ‘Tianzhu gap’, on the western Haiyuan Fault, Gansu (China). Geophysical Journal International, 120(3):599-645. Han R, Shimamoto T, Ando J I, et al. 2007. Seismic slip record in carbonate-bearing fault zones:An insight from high-velocity friction experiments on siderite gouge. Geology, 35(12):1131, doi:10.1130/G24106A.1. He W G, Liu B C, Lü T Y, et al. 1994. Study on the segmentation of Laohushan Fault zone. Northwestern Seismological Journal (in Chinese), 16(3):66-72. He X L, Li H B, Zhang L, et al. 2018. Mineral and chemical response to low magnetic susceptibility of the fault gouge from the Guanxian-Anxian fault zone and fault creep setting in the Longmen Shan. Chinese Journal of Geophysics (in Chinese), 61(5):1782-1796. Hirono T, Ikehara M, Otsuki K, et al. 2006a. Evidence of frictional melting from disk-shaped black material, discovered within the Taiwan Chelungpu fault system. Geophysical Research Letters, 33(19):L19311, doi:10.1029/2006GL027329. Hirono T, Lin W R, Yeh E C, et al. 2006b. High magnetic susceptibility of fault gouge within Taiwan Chelungpu fault:Nondestructive continuous measurements of physical and chemical properties in fault rocks recovered from Hole B, TCDP. Geophysical Research Letters, 33(15):L15303, doi:10.1029/2006gl026133. Hunt C P, Banerjee S K, Han J M, et al. 1995. Rock-magnetic proxies of climate change in the loess-palaeosol sequences of the western loess plateau of China. Geophysical Journal International, 123(1):232-244. Ikehara M, Hirono T, Tadai O, et al. 2007. Low total and inorganic carbon contents within the Taiwan Chelungpu fault system. Geochemical Journal, 41(5):391-396, doi:10.2343/geochemj.41.391. Institute of Geology, Chinese Seismological Bureau, and Ningxia Seismological Bureau. 1990. Haiyuan Active Fault System (in Chinese). Beijing:Seismological Press. Jolivet R, Lasserre C, Doin M P, et al. 2012. Shallow creep on the Haiyuan fault (Gansu, China) revealed by SAR interferometry. Journal of Geophysical Research, 117(B6):B06401, doi:10.1029/2011JB008732. Kouketsu Y, Shimizu I, Wang Y, et al. 2017. Raman spectra of carbonaceous materials in a fault zone in the Longmenshan thrust belt, China; comparisons with those of sedimentary and metamorphic rocks. Tectonophysics, 699:129-145. Kuo L W, Li H, Smith S A F, et al. 2014. Gouge graphitization and dynamic fault weakening during the 2008 MW7.9 Wenchuan earthquake. Geology, 42(1):47-50. Li H B, Wang H, Xu Z Q, et al. 2013. Characteristics of the fault-related rocks, fault zones and the principal slip zone in the Wenchuan Earthquake Fault Scientific Drilling Project Hole-1 (WFSD-1). Tectonophysics, 584:23-42. Li H B, Wang H, Yang G, et al. 2016. Lithological and structural characterization of the Longmen Shan fault belt from the 3rd hole of the Wenchuan Earthquake Fault Scientific Drilling Project (WFSD-3). International Journal of Earth Sciences, 105(8):2253-2272, doi:10.1007/s00531-015-1285-9. Lin A M. 2008. Fossil Earthquakes:The Formation and Preservation of Pseudotachylytes (in Chinese). Beijing:Higher Education Press. Liu B C, Yuan D Y, He W G, et al. 1992. The earthquake hazard analysis of western Haiyuan fault zone. Northwestern Seismological Journal (in Chinese), 14(S1):49-56. Liu B C, Yuan D Y, He W G. 1994. Late Quaternary tectonic activity and paleoseismology research of Laohu Shan fault.//Seismogeological Committee of Seismological Society of China. Study on Active Faults in China (in Chinese). Beijing:Seismological Press, 58-66. Liu D L, Li H B, Lee T Q, et al. 2014. Primary rock magnetism for the Wenchuan earthquake fault zone at Jiulong outcrop, Sichuan province, China. Tectonophysics, 619-620:58-69, doi:10.1016/j.tecto.2013.08.028. Liu D L, Li H B, Lee T Q, et al. 2015. Fault-rock magnetism from the earth surface trench reveals the different slip dynamics of the Wenchuan earthquake surface rupture zone. Acta Geologica Sinica (in Chinese), 89(12):2250-2265. Liu D L, Li H B, Lee T Q, et al. 2016. Magnetic mineral characterization close to the Yingxiu-Beichuan fault surface rupture zone of the Wenchuan earthquake (MW7.9, 2008) and its implication for earthquake slip processes. Journal of Asian Earth Sciences, 115:468-479. Liu J, Li H B, Si J L, et al. 2016. Origin, formation and tectonic implications of carbonaceous material in the Wenchuan earthquake fault zone. Acta Geologica Sinica (in Chinese), 90(10):2567-2581. Liu J R, Ren Z K, Zhang H P, et al. 2018. Late Quaternary slip rate of the Laohushan fault within the Haiyuan fault zone and its tectonic implications. Chinese Journal of Geophysics (in Chinese), 61(4):1281-1297, doi:10.6038/cjg2018L0364. Liu Q S, Deng C L, Yu Y, et al. 2005. Temperature dependence of magnetic susceptibility in an argon environment:Implications for pedogenesis of Chinese loess/palaeosols. Geophysical Journal International, 161(1):102-112, doi:10.1111/j.1365-246X.2005.02564.x. Liu-Zeng J, Klinger Y, Xu X W, et al. 2007. Millennial recurrence of large earthquakes on the Haiyuan fault near Songshan, Gansu province, China. Bulletin of the Seismological Society of America, 97(1B):14-34. Luo M Z, Pei J L, Tang L, et al. 2016. The co-seismic slip zone at the maximum vertical displacement site of Wenchuan earthquake and its high magnetic susceptibility implications. Quaternary Sciences (in Chinese), 36(2):484-491. Mishima T, Hirono T, Soh W, et al. 2006. Thermal history estimation of the Taiwan Chelungpu fault using rock-magnetic methods. Geophysical Research Letters, 33(23):L23311, doi:10.1029/2006GL028088. Mishima T, Hirono T, Nakamura N, et al. 2009. Changes to magnetic minerals caused by frictional heating during the 1999 Taiwan Chi-Chi earthquake. Earth, Planets and Space, 61(6):797-801, doi:10.1186/BF03353185. Nakamura N, Hirose T, Borradaile G J. 2002. Laboratory verification of submicron magnetite production in pseudotachylytes:Relevance for paleointensity studies. Earth and Planetary Science Letters, 201(1):13-18, doi:10.1016/s0012-821x(02)00704-5. O'Hara K, Mizoguchi K, Shimamoto T, et al. 2006. Experimental frictional heating of coal gouge at seismic slip rates:Evidence for devolatilization and thermal pressurization of gouge fluids. Tectonophysics, 424(1-2):109-118. Pei J L, Li H B, Wang H, et al. 2014. Magnetic properties of the Wenchuan Earthquake Fault Scientific Drilling Project Hole-1 (WFSD-1), Sichuan Province, China. Earth, Planets and Space, 66(1):23, doi:10.1186/1880-5981-66-23. Pei J L, Zhou Z Z, Li H B, et al. 2016. New evidence of repeated earthquakes along Wenchuan earthquake fault zone. Geology in China (in Chinese), 43(1):43-55. Roberts A P, Cui Y l, Verosub K L. 1995. Wasp-waisted hysteresis loops:Mineral magnetic characteristics and discrimination of components in mixed magnetic systems. Journal of Geophysical Research, 100(B9):17909-17924. Sibson R H. 1977. Fault rocks and fault mechanisms. Journal of the Geological Society, 133(3):191-213. Sibson R H. 1986. Earthquakes and rock deformation in crustal fault zones. Annual Review of Earth and Planetary Sciences, 14:149-175, doi:14.050186.001053. Tanikawa W, Mishima T, Hirono T, et al. 2007. High magnetic susceptibility produced in high-velocity frictional tests on core samples from the Chelungpu fault in Taiwan. Geophysical Research Letters, 34(15):L15304, doi:10.1029/2007gl030783. Tapponnier P, Xu Z Q, Roger F, et al. 2001. Oblique stepwise rise and growth of the Tibet Plateau. Science, 294(5547):1671-1677, doi:10.1126/science.105978. Togo T, Shimamoto T, Ma S L, et al. 2011. Internal structure of Longmenshan fault zone at Hongkou outcrop, Sichuan, China, that caused the 2008 Wenchuan earthquake. Earthquake Science, 24(3):249-265. Wang H, Li H B, Si J L, et al. 2014. Internal structure of the Wenchuan earthquake fault zone, revealed by surface outcrop and WFSD-1 drilling core investigation. Tectonophysics, 619-629:101-114. Wang P, Fu B H, Zhang B, et al. 2009. Relationships between surface ruptures and lithologic characteristics of the Wenchuan MS8.0 earthquake. Chinese Journal of Geophysics (in Chinese), 52(1):131-139. Xu Y B. 1986. The characteristics and the cause of the formation of the gouge from Haiyuan active fault zone and its effect on the sliding behavior of the fault zone. Northwestern Seismological Journal (in Chinese), 8(1):75-90. Yang T, Chen J Y, Wang H Q, et al. 2012a. Magnetic properties of fault rocks from the Yingxiu-Beichuan fault:Constraints on temperature rise within the shallow slip zone during the 2008 Wenchuan earthquake and their implications. Journal of Asian Earth Sciences, 50:52-60. Yang T, Chen J Y, Wang H Q, et al. 2012b. Rock magnetic properties of fault rocks from the rupture of the 2008 Wenchuan earthquake, China and their implications:Preliminary results from the Zhaojiagou outcrop, Beichuan County (Sichuan). Tectonophysics, 530-531:331-341, doi:10.1016/j.tecto.2012.01.019. Yang T, Chen J Y, Yang X S, et al. 2013. Differences in magnetic properties of fragments and matrix of breccias from the rupture of the 2008 Wenchuan earthquake, China:Relationship to faulting. Tectonophysics, 601:112-124, doi:10.1016/j.tecto.2013.05.002. Yang T, Dekkers M J, Zhang B. 2016a. Seismic heating signatures in the Japan trench subduction plate-boundary fault zone:Evidence from a preliminary rock magnetic ‘geothermometer’. Geophysical Journal International, 205(1):332-334, doi:10.1093/gji/ggw013. Yang T, Yang X S, Duan Q B, et al. 2016b. Rock magnetic expression of fluid infiltration in the Yingxiu-Beichuan fault (Longmen Shan thrust belt, China). Geochemistry, Geophysics, Geosystems, 17(3):1065-1085, doi:10.1002/2015GC006095. Yuan D Y, Zhang P Z, Liu B C, et al. 2004. Geometrical imagery and tectonic transformation of Late Quaternary active tectonics in Northeastern Margin of Qinghai-Xizang Plateau. Acta Geologica Sinica (in Chinese), 78(2):270-278. Yuan D Y, Ge W P, Chen Z W, et al. 2013. The growth of northeastern Tibet and its relevance to large-scale continental geodynamics:A review of recent studies. Tectonics, 32(5):1358-1370, doi:10.1002/tect.20081. Zhang L, He C R. 2013. Frictional properties of natural gouges from Longmenshan fault zone ruptured during the Wenchuan Mw7.9 earthquake. Tectonophysics, 594:149-164. Zhang L, Sun Z M, Li H B, et al. 2017. Rock record and magnetic response to large earthquakes within Wenchuan earthquake fault scientific drilling cores. Geochemistry, Geophysics, Geosystems, 18(5):1889-1906, doi:10.1002/2017GC006822. Zhang L, Li H B, Sun Z M, et al. 2018. A review of rock magnetism for fault rocks. Acta Geoscientica Sinica (in Chinese), 40(1):157-172. Zhang P Z, Min W, Deng Q D, et al. 2005. Paleoearthquake rupture behavior and recurrence of great earthquakes along the Haiyuan fault, northwestern China. Science in China Series D:Earth Sciences, 48(3):364-375. 附中文参考文献 邓起东, 张培震, 冉永康等. 2002. 中国活动构造基本特征. 中国科学(D辑), 32(12):1020-1030. 邓起东, 冉永康, 杨晓平等. 2007. 中国活动构造图(1:400万). 北京:地震出版社. 国家地震局地质研究所, 宁夏回族自治区地震局. 1990. 海原活动断裂带. 北京:地震出版社. 何文贵, 刘百篪, 吕太乙等. 1994. 老虎山断裂带的分段性研究. 西北地震学报, 16(3):66-72. 何祥丽, 李海兵, 张蕾等. 2018. 龙门山灌县-安县断裂带断层泥低磁化率的矿物、化学响应和蠕滑作用环境. 地球物理学报, 61(5):1782-1796, doi:10.6038/cjg2018M0165. 林爱明. 2008. 地震化石:假熔岩的形成与保存. 北京:高等教育出版社. 刘百篪, 袁道阳, 何文贵等. 1992. 海原断裂带西端强震危险性分析. 西北地震学报, 14(S1):49-56. 刘百篪, 袁道阳, 何文贵. 1994. 老虎山活动断裂晚第四纪构造活动及古地震研究.//中国地震学会地震地质专业委员会. 中国活动断层研究. 北京:地震出版社, 58-66. 刘栋梁, 李海兵, 李德贵等. 2015. 地表探槽断裂岩岩石磁学揭示汶川地震断裂带不同滑移机制. 地质学报, 89(12):2250-2265. 刘江, 李海兵, 司家亮等. 2016. 汶川地震断裂带碳质来源、赋存特征及构造意义. 地质学报, 90(10):2567-2581. 刘金瑞, 任治坤, 张会平等. 2018. 海原断裂带老虎山段晚第四纪滑动速率精确厘定与讨论. 地球物理学报, 61(4):1281-1297, doi:10.6038/cjg2018L0364. 罗明中, 裴军令, 唐玲等. 2016. 汶川地震最大垂直位移处同震滑移带特征及其高磁化率意义. 第四纪研究, 36(2):484-491. 裴军令, 周在征, 李海兵等. 2016. 汶川地震断裂带多次地震活动新证据. 中国地质, 43(1):43-55. 王萍, 付碧宏, 张斌等. 2009. 汶川8.0级地震地表破裂带与岩性关系. 地球物理学报, 52(1):131-139. 徐叶邦. 1986. 海原活动断裂中断层泥的特征、成因及其对断层滑动性能的影响. 西北地震学报, 8(1):75-90. 袁道阳, 张培震, 刘百篪等. 2004. 青藏高原东北缘晚第四纪活动构造的几何图像与构造转换. 地质学报, 78(2):270-278. 张蕾, 李海兵, 孙知明等. 2018. 断裂岩岩石磁学研究进展. 地球学报, 40(1):157-172. 张培震, 闵伟, 邓起东等. 2003. 海原活动断裂带的古地震与强震复发规律. 中国科学(D辑), 33(8):705-713.