LI HaiLong,
WU ZhaoCai,
JI Fei et al
.2020.Crustal density structure of the northern South China Sea from constrained 3-D gravity inversion Chinese Journal of Geophysics(in Chinese),63(5): 1894-1912,doi: 10.6038/cjg2020N0064
Crustal density structure of the northern South China Sea from constrained 3-D gravity inversion
LI HaiLong1,2, WU ZhaoCai1, JI Fei1,3, GAO JinYao1, YANG ChunGuo1, YUAN Yuan1, XU MingJu1,4, ZHANG JiaLing1,5
1. Key Laboratory of Submarine Geosciences, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China; 2. Key Laboratory of Gas Hydrate, Ministry of Natural Resources, Qingdao Institute of Marine Geology, Qingdao 266071, China; 3. Key Laboratory of Crustal Dynamics, Institute of Crustal Dynamics, China Earthquake Administration, Beijing 100085, China; 4. School of Earth Sciences, Zhejiang University, Hangzhou 310027, China; 5. College of Geomatics, Shandong University of Science and Technology, Qingdao 266590, China
Abstract:The imaging of crustal structure is the basis of studying the extension mechanism of the continental margin. Although a large number of crustal-scale 2-D seismic surveys have been carried out on the northern South China Sea, there are still many areas lacking seismic coverage, and the results obtained from these surveys cannot provide a regional view of crustal structure. To resolve the crustal structure across the northern South China Sea, a 3-D regional inversion of the free air gravity data constrained by bathymetric and sediment thickness information was undertaken, and the results from seismic studies were used to assess the quality of the inverted results. Density anomaly slices along the seismic profiles show an excellent agreement between the inverted results and the seismic Moho. We select two density anomaly isosurfaces that match well with seismic constraints to represent the depth of Moho and Conrad and to provide Moho depth and the upper and lower crustal thickness. Then, the crustal stretching factor as a whole and upper and lower crust are computed by assuming the corresponding initial thickness. Comparing the Moho depth with the published Curie depth, the results show that the Curie depths are larger than Moho depths in most of the northern South China Sea. Among them, the Xisha Trough with crustal stretching factor greater than 3.5 and starving post-rift magmatism is a potential area for serpentinization of the uppermost mantle. The crustal stretching factors (βw) in the northern margin of the South China Sea show that it has experienced two groups of rifting with extension directions of 128° and 160°, corresponding to Shenhu event and the first and second episode of Zhuqiong event, respectively. The stress field rotates clockwise during rifting. In addition, the stretching factors of the upper and lower crust indicate that the positive and inverse extension discrepancy are widespread in the northern continental margin. The shelf regions exhibit inverse extension discrepancy, and the oceanic-continental transition zones display positive extension discrepancy. It is conjectured that the positive and inverse extension discrepancy may be caused by the lower crustal flow, which is driven by a combination of the lateral gradient press arising from the crustal thickness variations, the asthenospheric buoyancy and the sediment loading.
Ao W, Zhao M H, Qiu X L, et al. 2012. Crustal structure of the Northwest Sub-Basin of the South China Sea and its tectonic implication. Earth Science-Journal of China University of Geosciences (in Chinese), 37(4):779-790, doi:10.3799/dqkx.2012.087. Bai Y L, Dong D D, Brune S, et al. 2019. Crustal stretching style variations in the northern margin of the South China Sea. Tectonophysics, 751:1-12, doi:10.1016/j.tecto.2018.12.012. Briais A, Patriat P, Tapponnier P. 1993. Updated interpretation of magnetic anomalies and seafloor spreading stages in the South China Sea:Implications for the Tertiary tectonics of Southeast Asia. Journal of Geophysical Research:Solid Earth, 98(B4):6299-6328, doi:10.1029/92jb02280. Cao J H, Sun J L, Xu H L, et al. 2014. Seismological features of the littoral fault zone in the Pearl River Estuary. Chinese Journal of Geophysics (in Chinese), 57(2):498-508, doi:10.6038/cjg20140215. Clark M K, Royden L H. 2000. Topographic ooze:Building the eastern margin of Tibet by lower crustal flow. Geology, 28(8):703-706, doi:10.1130/0091-7613(2000)028〈0703:tobtem〉2.3.co;2. Clift P, Lin J. 2001. Preferential mantle lithospheric extension under the South China margin. Marine and Petroleum Geology, 18(8):929-945, doi:10.1016/s0264-8172(01)00037-x. Clift P, Lin J, Barckhausen U. 2002. Evidence of low flexural rigidity and low viscosity lower continental crust during continental break-up in the South China Sea. Marine and Petroleum Geology, 19(8):951-970, doi:10.1016/s0264-8172(02)00108-3. Clift P D, Brune S, Quinteros J. 2015. Climate changes control offshore crustal structure at South China Sea continental margin. Earth and Planetary Science Letters, 420:66-72, doi:10.1016/j.epsl.2015.03.032. Cullen A, Reemst P, Henstra G, et al. 2010. Rifting of the South China Sea:new perspectives. Petroleum Geoscience, 16(3):273-282, doi:10.1144/1354-079309-908. Davis M, Kusznir N J. 2004. Depth-dependent lithospheric stretching at rifted continental margins.//Karner G D ed. Proceedings of the NSF Rifted Margins. New York:Columbia University Press, 92-137, doi:10.7312/karn12738-005. Deng Y F, Zhang Z J, Badal J, et al. 2014. 3-D density structure under South China constrained by seismic velocity and gravity data. Tectonophysics, 627:159-170, doi:10.1016/j.tecto.2013.07.032. Ding W W, Franke D, Li J B, et al. 2013. Seismic stratigraphy and tectonic structure from a composite multi-channel seismic profile across the entire Dangerous Grounds, South China Sea. Tectonophysics, 582:162-176, doi:10.1016/j.tecto.2012.09.026. Ding W W, Li J B, Clift P D. 2016. Spreading dynamics and sedimentary process of the Southwest Sub-basin, South China Sea:Constraints from multi-channel seismic data and IODP expedition 349. Journal of Asian Earth Sciences, 115:97-113, doi:10.1016/j.jseaes.2015.09.013. Dong D D, Wu S G, Li J B, et al. 2014. Tectonic contrast between the conjugate margins of the South China Sea and the implication for the differential extensional model. Science China:Earth Sciences (in Chinese), 57:1415-1426, doi:10.1007/s11430-013-4740-0 Driscoll N W, Karner G D. 1998. Lower crustal extension across the Northern Carnarvon basin, Australia:Evidence for an eastward dipping detachment. Journal of Geophysical Research:Solid Earth, 103(B3):4975-4991, doi:10.1029/97jb03295. Eakin D H, McIntosh K D, Van Avendonk H J A, et al. 2014. Crustal-scale seismic profiles across the Manila subduction zone:The transition from intraoceanic subduction to incipient collision. Journal of Geophysical Research:Solid Earth, 119(1):1-17, doi:10.1002/2013JB010395. Expedition 349 Scientists. 2014. South China Sea tectonics:Opening of the South China Sea and its implications for southeast Asian tectonics, climates, and deep mantle processes since the Late Mesozoic. International Ocean Discovery Program Preliminary Report 349, doi:10.14379/iodp.pr.349.2014. Fan C, Xia S H, Cao J H, et al. 2019. Lateral crustal variation and post-rift magmatism in the northeastern South China Sea determined by wide-angle seismic data. Marine Geology, 410:70-87, doi:10.1016/j.margeo.2018.12.007. Gao J W, Peng X C, Wu S G, et al. 2019. Different expressions of the crustal structure across the Dongsha Rise along the northeastern margin of the South China Sea. Journal of Asian Earth Sciences, 171:187-200, doi:10.1016/j.jseaes.2018.01.034. Gao J Y, Liu B H. 2014. China Offshore Marine Map-Marine Geophysics (in Chinese). Beijing:Ocean Press. Hayes D E, Nissen S S, Buhl P, et al. 1995. Throughgoing crustal faults along the northern margin of the South China Sea and their role in crustal extension. Journal of Geophysical Research:Solid Earth, 100(B11):22435-22446, doi:10.1029/95jb01867. Holloway N H. 1982. North Palawan Block, Philippines-its relation to Asian mainland and role in evolution of South China Sea. AAPG Bulletin, 66(9):1355-1383, doi:10.1306/03b5a7a5-16d1-11d7-8645000102c1865d. Huang C J, Zhou D, Sun Z, et al. 2005. Deep crustal structure of Baiyun Sag, northern South China Sea revealed from deep seismic reflection profile. Chinese Science Bulletin, 50(11):1131-1138, doi:10.1360/04wd0207. Jeanniot L, Kusznir N, Mohn G, et al. 2016. Constraining lithosphere deformation modes during continental breakup for the Iberia-Newfoundland conjugate rifted margins. Tectonophysics, 680:28-49, doi:10.1016/j.tecto.2016.05.006. Ji F, Li F, Gao J Y, et al. 2018. 3-D density structure of the Ross Sea basins, West Antarctica from constrained gravity inversion and their tectonic implications. Geophysical Journal International, 215(2):1241-1256, doi:10.1093/gji/ggy343. Ji F, Li F, Zhang Q, et al. 2019. Crustal density structure of the Antarctic continent from constrained 3-D gravity inversion. Chinese Journal of Geophysics (in Chinese), 62(3):849-863, doi:10.6038/cjg2019M0507. Kusznir N J, Hunsdale R, Roberts A M. 2004. Timing of depth-dependent lithosphere stretching on the S. Lofoten rifted margin offshore mid-Norway:pre-breakup or post-breakup?. Basin Research, 16(2):279-296, doi:10.1111/j.1365-2117.2004.00233.x. Lüdmann T, Wong H K. 1999. Neotectonic regime on the passive continental margin of the northern South China Sea. Tectonophysics, 311(1999):113-138, doi:10.1016/s0040-1951(99)00155-9. Larsen H C, Mohn G, Nirrengarten M, et al. 2018. Rapid transition from continental breakup to igneous oceanic crust in the South China Sea. Nature Geoscience, 11(10):782-789, doi:10.1038/s41561-018-0198-1. Lester R, Van Avendonk H J A, Mcintosh K, et al. 2014. Rifting and magmatism in the northeastern South China Sea from wide-angle tomography and seismic reflection imaging. Journal of Geophysical Research:Solid Earth, 119(3):2305-2323, doi:10.1002/2013JB010639. Li C F, Wang J, Lin J, et al. 2013. Thermal evolution of the North Atlantic lithosphere:New constraints from magnetic anomaly inversion with a fractal magnetization model. Geochemistry, Geophysics, Geosystems, 14(12):5078-5105, doi:doi:10.1002/2013GC004896. Li C F, Xu X, Lin J, et al. 2014. Ages and magnetic structures of the South China Sea constrained by deep tow magnetic surveys and IODP Expedition 349. Geochemistry, Geophysics, Geosystems, 15(12):4958-4983, doi:10.1002/2014GC005567. Li C F, Lu Y, Wang J. 2017. A global reference model of Curie-point depths based on EMAG2. Scientific Reports, 7:45129, doi:10.1038/srep45129. Li J B. 2011. Dynamics of the continental margins of South China Sea:scientific experiments and research progresses. Chinese Journal of Geophysics (in Chinese), 54(12):2993-3003, doi:10.3969/j.issn.0001-5733.2011.12.002. Li S L, Mooney W D, Fan J C. 2006. Crustal structure of mainland China from deep seismic sounding data. Tectonophysics, 420(1-2):239-252, doi:10.1016/j.tecto.2006.01.026. Li Y G, Oldenburg D W. 1996. 3-D inversion of magnetic data. Geophysics, 61(2):394-408, doi:10.1190/1.1443968. Li Y G, Oldenburg D W. 1998. 3-D inversion of gravity data. Geophysics, 63(1):109-119, doi:10.1190/1.1444302. Li Y Q, Yan P, Wang Y L, et al. 2017. Deep crustal structure revealed by ocean bottom seismic profile OBS2015-1 in southwestern Dongsha waters. Journal of Tropical Oceanography (in Chinese), 36(5):83-92, doi:10.11978/2016122. Li Z X, Li X H. 2007. Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China:A flat-slab subduction model. Geology, 35(2):179-182, doi:10.1130/G23193A.1. Liu S Q, Zhao M H, Sibuet J C, et al. 2018. Geophysical constraints on the lithospheric structure in the northeastern South China Sea and its implications for the South China Sea geodynamics. Tectonophysics, 742-743:101-119, doi:10.1016/j.tecto.2018.06.002. Ludwig W J, Kumar N, Houtz R E. 1979. Profiler-sonobuoy measurements in the South China Sea Basin. Journal of Geophysical Research:Solid Earth, 84(B7):3505-3518, doi:10.1029/jb084ib07p03505. Mcintosh K, Lavier L, Van Avendonk H, et al. 2014. Crustal structure and inferred rifting processes in the northeast South China Sea. Marine and Petroleum Geology, 58:612-626, doi:10.1016/j.marpetgeo.2014.03.012. McKenzie D. 1978. Some remarks on the development of sedimentary basins. Earth and Planetary Science Letters, 40(1):25-32, doi:10.1016/0012-821x(78)90071-7. Morley C K, Haranya C, Phoosongsee W, et al. 2004. Activation of rift oblique and rift parallel pre-existing fabrics during extension and their effect on deformation style:examples from the rifts of Thailand. Journal of Structural Geology, 26(10):1803-1829, doi:doi:10.1016/j.jsg.2004.02.014. Nissen S S, Hayes D E, Buhl P, et al. 1995. Deep penetration seismic soundings across the northern margin of the South China Sea. Journal of Geophysical Research:Solid Earth, 100(B11):22407-22433, doi:10.1029/95jb01866. Pérez-Gussinyé M, Ranero C R, Reston T J, et al. 2003. Mechanisms of extension at nonvolcanic margins:evidence from the Galicia interior basin, west of Iberia. Journal of Geophysical Research:Solid Earth, 108(B5):2245, doi:10.1029/2001JB000901. Qiu N, Wang Z, Xie H, et al. 2013. Geophysical investigations of crust-scale structural model of the Qiongdongnan Basin, Northern South China Sea. Marine Geophysical Research, 34(3):259-279, doi:10.1007/s11001-013-9182-8. Qiu X L, Ye S Y, Wu S M, et al. 2001. Crustal structure across the Xisha Trough, northwestern South China Sea. Tectonophysics, 341(1-4):179-193, doi:10.1016/s0040-1951(01)00222-0. Qiu X L, Zhao M H, Xu H L, et al. 2012. Important processes of deep seismic surveys in the South China Sea:retrospection and expectation. Journal of Tropical Oceanography (in Chinese), 31(3):1-9, doi:10.3969/j.issn.1009-5470.2012.03.001. Ranero C R, Pérez-Gussinyé M. 2010. Sequential faulting explains the asymmetry and extension discrepancy of conjugate margins. Nature, 468(7321):294-299, doi:10.1038/nature09520. Reston T, McDermott K. 2014. An assessment of the cause of the extension discrepancy with reference to the west Galicia margin. Basin Research, 26(1):135-153, doi:10.1111/bre.12042. Royden L H, Burchfiel B C, van der Hilst R D. 2008. The geological evolution of the Tibetan Plateau. Science, 321(5892):1054-1058, doi:10.1126/science.1155371. Ruan A G, Wei X D, Niu X W, et al. 2016. Crustal structure and fracture zone in the Central Basin of the South China Sea from wide angle seismic experiments using OBS. Tectonophysics, 688:1-10, doi:10.1016/j.tecto.2016.09.022. Sandwell D T, Müller R D, Smith W H F, et al. 2014. New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure. Science, 346(6205):65-67, doi:10.1126/science.1258213. Song X X, Li C F, Yao Y J, et al. 2017. Magmatism in the evolution of the South China Sea:Geophysical characterization. Marine Geology, 394:4-15, doi:10.1016/j.margeo.2017.07.021. Su D Q, White N, Dan M. 1989. Extension and subsidence of the Pearl River mouth basin, Northern South China Sea. Basin Research, 2(4):205-222, doi:10.1111/j.1365-2117.1989.tb00036.x. Sun W D. 2016. Initiation and evolution of the South China Sea:an overview. Acta Geochimica, 35(3):215-225, doi:10.1007/s11631-016-0110-x. Sun Z, Pang X, Zhong Z H, et al. 2005. Dynamics of Tertiary tectonic evolution of the Baiyun Sag in the Pearl River Mouth Basin. Earth Science Frontiers (in Chinese), 12(4):489-498, doi:10.3321/j.issn:1005-2321.2005.04.018. Sun Z, Stock J, Jian Z, et al. 2016. Expedition 367/368 Scientific Prospectus:South China Sea Rifted Margin. College Station, TX:International Ocean Discovery Program, doi:10.14379/iodp.sp.367368.2016. Tapponnier P G, Peltzer G L, Le Dain A Y, et al. 1982. Propagating extrusion tectonics in Asia:new insights from simple experiments with plasticine. Geology, 10(12):611-616, doi:10.1130/0091-7613(1982)10〈611:petian〉2.0.co;2. Taylor B, Hayes D E. 1983. Origin and history of the South China Sea Basin.//Hayes D E ed. The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands:Part 2. Washington, D. C.:Geophysical Monograph Series, 23-56, doi:10.1029/gm027p0023. Wan K Y, Xia S H, Cao J H, et al. 2017. Deep seismic structure of the northeastern South China Sea:Origin of a high-velocity layer in the lower crust. Journal of Geophysical Research:Solid Earth, 122(4):2831-2858, doi:10.1002/2016JB013481. Wang P X, Prell W L, Blum P, et al. 2000. Proceedings of ocean drilling program, initial report. College Station, TX:Ocean Drilling Program, doi:10.2973/odp.proc.ir.184.2000. Wang T K, Chen M K, Lee C S, et al. 2006. Seismic imaging of the transitional crust across the northeastern margin of the South China Sea. Tectonophysics, 412(3-4):237-254, doi:10.1016/j.tecto.2005.10.039. Wei X D, Ruan A G, Zhao M H, et al. 2011. A wide-angle OBS profile across Dongsha Uplift and Chaoshan Depression in the mid-northern South China Sea. Chinese Journal of Geophysics (in Chinese), 54(12):3325-3335, doi:10.3969/j.issn.0001-5733.2011.12.030. Welford J K, Hall J. 2007. Crustal structure of the Newfoundland rifted continental margin from constrained 3-D gravity inversion. Geophysical Journal of the Royal Astronomical Society, 171(2):890-908, doi:10.1111/j.1365-246X.2007.03549.x. Welford J K, Shannon P M, O'Reilly B M, et al. 2010. Lithospheric density variations and Moho structure of the Irish Atlantic continental margin from constrained 3-D gravity inversion. Geophysical Journal International, 183(1):79-95, doi:10.1111/j.1365-246X.2010.04735.x. Welford J K, Hall J. 2013. Lithospheric structure of the Labrador Sea from constrained 3-D gravity inversion. Geophysical Journal International, 195(2):767-784, doi:10.1093/gji/ggt296. Welford J K, Peace A L, Geng M X, et al. 2018. Crustal structure of Baffin Bay from constrained 3-D gravity inversion and deformable plate tectonic models. Geophysical Journal International, 214(2):1281-1300, doi:10.1093/gji/ggy193. Wu F Y, Sun D Y, Ge W C, et al. 2011. Geochronology of the Phanerozoic granitoids in northeastern China. Journal of Asian Earth Sciences, 41(1):1-30, doi:10.1016/j.jseaes.2010.11.014. Wu Z C, Gao J Y, Ding W W, et al. 2017. Moho depth of the South China Sea basin from three-dimensional gravity inversion with constraint points. Chinese Journal of Geophysics (in Chinese), 60(7):2599-2613, doi:10.6038/cjg20170709. Wu Z L, Li J B, Ruan A G, et al. 2012. Crustal structure of the northwestern sub-basin, South China Sea:Results from a wide-angle seismic experiment. Science China:Earth Sciences, 55(1):159-172, doi:10.1007/s11430-011-4324-9. Xie H, Zhou D, Li Y P, et al. 2014. Cenozoic tectonic subsidence in deepwater sags in the Pearl River Mouth Basin, northern South China Sea. Tectonophysics, 615-616:182-198, doi:10.1016/j.tecto.2014.01.010. Yan P, Zhou D, Liu Z S. 2001. A crustal structure profile across the northern continental margin of the South China Sea. Tectonophysics, 338(1):1-21, doi:10.1016/s0040-1951(01)00062-2. Yeh Y C, Hsu S K, Doo W B, et al. 2012. Crustal features of the northeastern South China Sea:insights from seismic and magnetic interpretations. Marine Geophysical Research, 33(4):307-326, doi:10.1007/s11001-012-9154-4. Yu C B, Zhao J F, Shi X B, et al. 2017. Sediment density correction of gravity anomaly in the South China Sea and its significance to analyze regional tectonic characteristics. Chinese Journal of Geophysics (in Chinese), 60(8):3151-3166, doi:10.6038/cjg20170822. Zhang G L, Luo Q, Zhao J, et al. 2018. Geochemical nature of sub-ridge mantle and opening dynamics of the South China Sea. Earth and Planetary Science Letters, 489:145-155, doi:10.1016/j.epsl.2018.02.040. Zhao M H, Qiu X L, Xia S H, et al. 2010. Seismic structure in the northeastern South China Sea:S-wave velocity and Vp/Vs ratios derived from three-component OBS data. Tectonophysics, 480(1-4):183-197, doi:10.1016/j.tecto.2009.10.004. Zhao M H, Du F, Wang Q, et al. 2018. Current status and challenges for three-dimensional deep seismic survey in the South China Sea. Earth Science (in Chinese), 43(10):3749-3761, doi:10.3799/dqkx.2018.573. Zhao Z X, Sun Z, Liu J B, et al. 2018. The continental extension discrepancy and anomalous subsidence pattern in the western Qiongdongnan Basin, South China Sea. Earth and Planetary Science Letters, 501:180-191, doi:10.1016/j.epsl.2018.08.048. Zhao Z, Sun Z, Wang Z, et al. 2013. The dynamic mechanism of post-rift accelerated subsidence in Qiongdongnan Basin, northern South China Sea. Marine Geophysical Research, 34(3):295-308, doi:10.1007/s11001-013-9188-2. Zhou D, Ru K, Chen H Z. 1995. Kinematics of Cenozoic extension on the South China Sea Continental margin and its implications for the tectonic evolution of the region. Tectonophysics, 251(1-4):161-177, doi:10.1016/0040-1951(95)00018-6. Zou H P. 1998. Peculiarities of tectono-magmatism in a continental-margin-spreading-type Diwa basin system-with special reference to the continental margin basin system of the northern South China Sea. Geotectonica et Metallogenia (in Chinese), 22(1):1-11. 附中文参考文献 敖威, 赵明辉, 丘学林等. 2012. 南海西北次海盆及其邻区地壳结构和构造意义. 地球科学——中国地质大学学报, 37(4):779-790, doi:10.3799/dqkx.2012.087. 曹敬贺, 孙金龙, 徐辉龙等. 2014. 珠江口海域滨海断裂带的地震学特征. 地球物理学报, 57(2):498-508, doi:10.6038/cjg20140215. 董冬冬, 吴时国, 李家彪等. 2014. 南海共轭大陆边缘的构造对比及差异伸展模式. 中国科学:地球科学,44(5):1059-1070, doi:10.1007/s11430-013-4740-0. 高金耀, 刘保华. 2014. 中国近海海洋图集——海洋地球物理. 北京:海洋出版社. 黄春菊, 周蒂, 陈长民等. 2005. 深反射地震剖面所揭示的白云凹陷的深部地壳结构. 科学通报, 50(10):1024-1031, doi:10.3321/j.issn:0023-074X.2005.10.014. 纪飞, 李斐, 张峤等. 2019. 基于约束三维重力反演的南极大陆地壳密度结构研究. 地球物理学报, 62(3):849-863, doi:10.6038/cjg2019M0507. 李家彪. 2011. 南海大陆边缘动力学:科学实验与研究进展. 地球物理学报, 54(12):2993-3003, doi:10.3969/j.issn.0001-5733.2011.12.002. 李亚清, 阎贫, 王彦林等. 2017. 东沙群岛西南海区海底地震测线OBS2015-1揭示的深部地壳结构. 热带海洋学报, 36(5):83-92, doi:10.11978/2016122. 丘学林, 赵明辉, 徐辉龙等. 2012. 南海深地震探测的重要科学进程:回顾和展望. 热带海洋学报, 31(3):1-9, doi:10.3969/j.issn.1009-5470.2012.03.001. 孙珍, 庞雄, 钟志洪等. 2005. 珠江口盆地白云凹陷新生代构造演化动力学. 地学前缘, 12(4):489-498, doi:10.3321/j.issn:1005-2321.2005.04.018. 卫小冬, 阮爱国, 赵明辉等. 2011. 穿越东沙隆起和潮汕坳陷的OBS广角地震剖面. 地球物理学报, 54(12):3325-3335, doi:10.3969/j.issn.0001-5733.2011.12.030. 吴招才, 高金耀, 丁巍伟等. 2017. 南海海盆三维重力约束反演莫霍面深度及其特征. 地球物理学报, 60(7):2599-2613, doi:10.6038/cjg20170709. 吴振利, 李家彪, 阮爱国等. 2011. 南海西北次海盆地壳结构:海底广角地震实验结果. 中国科学:地球科学, 41(10):1463-1476, doi:10.1007/s11430-011-4324-9. 于传海, 赵俊峰, 施小斌等. 2017. 南海重力异常的沉积层密度改正及其对区域构造特征分析的意义. 地球物理学报, 60(8):3151-3166, doi:10.6038/cjg20170822. 赵明辉, 杜峰, 王强等. 2018. 南海海底地震仪三维深地震探测的进展及挑战. 地球科学, 43(10):3749-3761, doi:10.3799/dqkx.2018.573. 邹和平. 1998. 陆缘扩张型地洼盆地系构造-岩浆作用的独特性——以南海北部陆缘盆地系为例. 大地构造与成矿学, 22(1):1-11.