LI BaoChun,
ZHANG LeTian,
YE GaoFeng et al
.2020.Upper mantle thermal structure beneath the eastern margin of the Tibetan Plateau inferred from electrical structure model Chinese Journal of Geophysics(in Chinese),63(3): 1043-1055,doi: 10.6038/cjg2020N0234
基于电性结构模型的青藏高原东缘上地幔热结构研究
李宝春, 张乐天, 叶高峰, 金胜, 魏文博, 谢成良, 陈显荣
中国地质大学(北京)地球物理与信息技术学院, 北京 100083
Upper mantle thermal structure beneath the eastern margin of the Tibetan Plateau inferred from electrical structure model
LI BaoChun, ZHANG LeTian, YE GaoFeng, JIN Sheng, WEI WenBo, XIE ChengLiang, CHEN XianRong
School of Geophysics and Information Technology, China University of Geosciences(Beijing), Beijing 100083, China
Abstract:The eastern margin of the Tibetan Plateau plays a significant role in controlling the uplift and expansion of the plateau. Previous Magnetotelluric (MT) studies have been conducted to better understand the lithospheric structure and physical properties of this region. In this study, to interpret the previously published MT models more quantitatively, we establish a quantitative relationship between the electrical conductivity and temperature, as well as melt fraction of the upper mantle, by combining the two-dimensional MT inversion model with laboratory derived formulae for electrical conductivity of major upper mantle minerals and melts using the mixing law of Hashin-Shtrikman (HS) bounds. The resultant upper mantle thermal structure as well as distribution model of upper mantle melt fraction suggest that the upper mantle conductors observed from previous MT studies can be interpreted as regions with partial melting under high temperature. The large scale upper mantle conductor beneath Songpan-Garzê terrane corresponds to temperature ranges between 1300 and 1500℃, with melt fraction as high as 10%, which is consistent with the qualitative interpretations of partial melting from previous MT studies. A smaller conductive region in the upper mantle beneath the western Sichuan Basin represents a region with the temperature of 1200~1400℃ and 1%~5% melt fraction, which indicate upwelling of the asthenosphere and modification of the western margin of the Yangtze Craton. The upper mantle resistor beneath the Longmen Shan fault zone corresponds to a relatively cold region with temperature around 1100℃, and very limited amount of melt fraction (0~0.1%), which is consistent with its rigid behavior as a seismogenic zone. The coldest region locates beneath the eastern Sichuan Basin with upper mantle temperature of 800~900℃ and no partial melting, which represents the ancient, stable, cratonic Yangtze block.
Bai D H, Unsworth M J, Meju M A, et al. 2010. Crustal deformation of the eastern Tibetan plateau revealed by magnetotelluric imaging. Nature Geoscience, 3(5):358-362. Chave A D, Jones A G. 2012. The Magnetotelluric Method:Theory and Practice. Cambridge:Cambridge University Press. Clark M K, Royden L H. 2000. Topographic ooze:Building the eastern margin of Tibet by lower crustal flow. Geology, 28(8):703-706. Dai L D, Karato S I. 2009. Electrical conductivity of pyrope-rich garnet at high temperature and high pressure. Physics of the Earth and Planetary Interiors, 176(1-2):83-88. Dong S W, Li T D. 2009. SinoProbe:the exploration of the deep interior beneath the Chinese continent. Acta Geologica Sinica (in Chinese), 83(7):895-909. Gao R, Chen C, Wang H Y, et al. 2016. SINOPROBE deep reflection profile reveals a Neo-Proterozoic subduction zone beneath Sichuan Basin. Earth and Planetary Science Letters, 454:86-91. Grant K, Ingrin J, Lorand J P, et al. 2007. Water partitioning between mantle minerals from peridotite xenoliths. Contributions to Mineralogy & Petrology, 154(1):15-34. Guo X Y, Gao R, Randy K G, et al. 2013. Imaging the crustal structure beneath the eastern Tibetan Plateau and implications for the uplift of the Longmen Shan range. Earth and Planetary Science Letters, 379:72-80. Guo X, Chen Q, Ni H W. 2016. Electrical conductivity of hydrous silicate melts and aqueous fluids:Measurement and applications. Science China Earth Sciences, 59(5):889-900. Hashin Z, Shtrikman S. 1962. A variational approach to the theory of the elastic behaviour of polycrystals. Journal of the Mechanics & Physics of Solids, 10(4):343-352. Hata M, Uyeshima M. 2015. Temperature and melt fraction distributions in a mantle wedge determined from the electrical conductivity structure:Application to one nonvolcanic and two volcanic regions in the Kyushu subduction zone, Japan. Geophysical Research Letters, 42(8):2709-2717. Huang X G, Wang X X, Chen Z A, et al. 2017. The experimental research on electrical conductivity for minerals and rocks under condition of upper mantle. Scientia Sinica Terrae (in Chinese), 47(5):518-529. Ji S C, Wang Q, Sun S S, et al. 2008. Continental Extrusion and Seismicity in China. Acta Geologica Sinica (in Chinese), 82(12):1644-1667. Jiang G Z, Hu S B, Shi Y Z, et al. 2019. Terrestrial heat flow of continental China:Updated dataset and tectonic implications. Tectonophysics, 753:36-48. Jin S, Zhang L T, Wei W B, et al. 2010. Magnetotelluric method for deep detection of Chinese continent. Acta Geologica Sinica (in Chinese), 84(6):808-817. Katz R F, Spiegelman M, Langmuir C H. 2003. A new parameterization of hydrous mantle melting. Geochemistry, Geophysics, Geosystems, 4(9):1073, doi:10.1029/2002GC000433. Kohn S C, Grant K J. 2006. The partitioning of water between nominally anhydrous minerals and silicate melts. Reviews in Mineralogy & Geochemistry, 62(1):231-241. Ledo J, Jones A G. 2005. Upper mantle temperature determined from combining mineral composition, electrical conductivity laboratory studies and magnetotelluric field observations:Application to the intermontane belt, Northern Canadian Cordillera. Earth and Planetary Science Letters, 236(1-2):258-268. Peslier A H. 2010. A review of water contents of nominally anhydrous natural minerals in the mantles of Earth, Mars and the Moon. Journal of Volcanology & Geothermal Research, 197(1-4):239-258. Royden L H, Burchfiel B C, King R W, et al. 1997. Surface deformation and lower crustal flow in Eastern Tibet. Science, 276(5313):788-790. Sifré D, Gardés E, Massuyeau M, et al. 2014. Electrical conductivity during incipient melting in the oceanic low-velocity zone. Nature, 509(7498):81-85. Wan Z S, Zhao G Z, Tang J, et al. 2010. The electrical structure of the crust along Mianning-Yibin profile in the eastern edge of Tibetan plateau and its tectonic implications. Chinese Journal of Geophysics (in Chinese), 53(3):585-594, doi:10.3969/j.issn.0001-5733.2010.03.012. Wang Q, Bagdassarov N, Ji S C. 2013. The Moho as a transition zone:A revisit from seismic and electrical properties of minerals and rocks. Tectonophysics, 609:395-422. Wang Q, Bagdassarov N, Xia Q K, et al. 2014a. Water contents and electrical conductivity of peridotite xenoliths from the North China Craton:Implications for water distribution in the upper mantle. Lithos, 189:105-126. Wang X B, Zhang G, Fang H, et al. 2014b. Crust and upper mantle resistivity structure at middle section of Longmenshan, eastern Tibetan plateau. Tectonophysics, 619-620:143-148. Wang X B, Zhu Y T, Zhao X K, et al. 2009. Deep conductivity characteristics of the Longmen Shan, Eastern Qinghai-Tibet Plateau. Chinese Journal of Geophysics (in Chinese), 52(2):564-571. Wang X B, Yu N, Gao S, et al. 2017. Research progress in research on electrical structure of crust and upper mantle beneath the eastern margin of the Tibetan plateau. Chinese Journal of Geophysics (in Chinese), 60(6):2350-2370, doi:10.6038/cjg20170626. Yang X Z, Keppler H, McCammon C, et al. 2011. Effect of water on the electrical conductivity of lower crustal clinopyroxene. Journal of Geophysical Research, 116(B4):B04208, doi:10.1029/2010JB008010. Yang X Z. 2013. The origin of electrical anomalies in the uppermost mantle. Acta Petrologica et Mineralogica (in Chinese), 32(5):663-679. Yang X Z. 2014. Electrical petrology:Principles, methods and advances. Scientia Sinica Terrae (in Chinese), 44(9):1884-1900. Yoshino T, Matsuzaki T, Shatskiy A, et al. 2009. The effect of water on the electrical conductivity of olivine aggregates and its implications for the electrical structure of the upper mantle. Earth and Planetary Science Letters, 288(1-2):291-300. Zhang B H, Yoshino T, Wu X P, et al. 2012. Electrical conductivity of enstatite as a function of water content:Implications for the electrical structure in the upper mantle. Earth and Planetary Science Letters, 357-358:11-20. Zhang L T. 2017. A review of recent developments in the study of regional lithospheric electrical structure of the Asian continent. Surveys in Geophysics, 38(5):1043-1096. Zhang L T, Wei W B, Jin S, et al. 2011. Studies on the temperature dependence of electrical conductivity of upper mantle rocks. Progress in Geophysics (in Chinese), 26(2):505-510, doi:10.3969/j.issn.1004-2903.2011.02.015. Zhang L T, Jin S, Wei W B, et al. 2012. Electrical structure of crust and upper mantle beneath the eastern margin of the Tibetan plateau and the Sichuan basin. Chinese Journal of Geophysics (in Chinese), 55(12):4126-4137, doi:10.6038/j.issn.0001-5733.2012.12.025. Zhang P Z, Xu X W, Wen X Z, et al. 2008. Slip rates and recurrence intervals of the Longmen Shan active fault zone, and tectonic implications for the mechanism of the May 12 Wenchuan earthquake, 2008, Sichuan, China. Chinese Journal of Geophysics (in Chinese), 51(4):1066-1073. Zhao G Z, Chen X B, Wang L F, et al. 2008. Evidence of crustal ‘channel flow’ in the eastern margin of Tibetan Plateau from MT measurements. Chinese Science Bulletin, 53(12):1887-1893. Zhao G Z, Chen X B, Xiao Q B, et al. 2009. Generation mechanism of Wenchuan strong earthquake of MS8.0 inferred from EM measurements in three levers. Chinese Journal of Geophysics (in Chinese), 52(2):553-563. Zhao G, Unsworth M J, Zhan Y, et al. 2012. Crustal structure and rheology of the Longmenshan and Wenchuan MW7.9 earthquake epicentral area from magnetotelluric data. Geology, 40(12):1139-1142. 附中文参考文献 董树文, 李廷栋. 2009. SinoProbe——中国深部探测实验. 地质学报, 83(7):895-909. 郭璇, 陈琪, 倪怀玮. 2016. 含水硅酸盐熔体和富水流体电导率实验研究及其意义. 中国科学:地球科学, 46(4):430-442. 黄晓葛, 王欣欣, 陈祖安等. 2017. 上地幔矿物和岩石电导率的实验研究. 中国科学:地球科学, 47(5):518-529. 嵇少丞, 王茜, 孙圣思等. 2008. 亚洲大陆逃逸构造与现今中国地震活动. 地质学报, 82(12):1644-1667. 金胜, 张乐天, 魏文博等. 2010. 中国大陆深探测的大地电磁测深研究. 地质学报, 84(6):808-817. 万战生, 赵国泽, 汤吉等. 2010. 青藏高原东边缘冕宁-宜宾剖面电性结构及其构造意义. 地球物理学报, 53(3):585-594, doi:10.3969/j.issn.0001-5733.2010.03.012. 王绪本, 朱迎堂, 赵锡奎等. 2009. 青藏高原东缘龙门山逆冲构造深部电性结构特征. 地球物理学报, 52(2):564-571. 王绪本, 余年, 高嵩等. 2017. 青藏高原东缘地壳上地幔电性结构研究进展. 地球物理学报, 60(6):2350-2370, doi:10.6038/cjg20170626. 杨晓志. 2013. 上地幔顶部电导率异常的起因. 岩石矿物学杂志, 32(5):663-679. 杨晓志. 2014. 电导岩石学:原理、方法和进展. 中国科学:地球科学, 44(9):1884-1900. 张乐天, 魏文博, 金胜等. 2011. 上地幔岩石的电性-温度依赖关系研究. 地球物理学进展, 26(2):505-510, doi:10.3969/j.issn.1004-2903.2011.02.015. 张乐天, 金胜, 魏文博等. 2012. 青藏高原东缘及四川盆地的壳幔导电性结构研究. 地球物理学报, 55(12):4126-4137, doi:10.6038/j.issn.0001-5733.2012.12.025. 张培震, 徐锡伟, 闻学泽等. 2008. 2008年汶川8.0级地震发震断裂的滑动速率、复发周期和构造成因. 地球物理学报, 51(4):1066-1073. 赵国泽, 陈小斌, 王立凤等. 2008. 青藏高原东边缘地壳"管流"层的电磁探测证据. 科学通报, 53(3):345-350. 赵国泽, 陈小斌, 肖骑彬等. 2009. 汶川MS8.0级地震成因三"层次"分析——基于深部电性结构. 地球物理学报, 52(2):553-563.