FENG ShaoYing,
LI QiuSheng,
DENG XiaoJuan et al
.2020.Crustal skeleton structure of the lateral collision zone of the Qinghai-Tibet Plateau revealed by large-shot set of deep-reflecting profiling Chinese Journal of Geophysics(in Chinese),63(3): 828-839,doi: 10.6038/cjg2020N0271
Crustal skeleton structure of the lateral collision zone of the Qinghai-Tibet Plateau revealed by large-shot set of deep-reflecting profiling
FENG ShaoYing1, LI QiuSheng2, DENG XiaoJuan1, LI JingYuan4, XIONG XiaoSong3, LU ZhanWu2, LI WenHui2, WANG XiaoRan2, WU QingYu2, SHI JinHu1
1. Geophysical Exploration Center, China Earthquake Administration, Zhengzhou 450002, China; 2. Key Laboratory of Deep-Earth Dynamics of Ministry of Natural Resources, Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China; 3. Deep Earth Exploration Center, Chinese Academy of Geological Sciences, Beijing 100037, China; 4. Southcentral Branch of Sinopec Geophysical Co., Ltd, Hunan Xiangtan 411104, China
Abstract:The southeastern margin of the Qinghai-Tibet Plateau is located on the flank of the collision between India and Eurasian plate. Revealing the lithospheric structure in this area is helpful to understand the deep dynamic process of the collision orogeny and crucial to construct the theoretical framework of continental collision metallogenesis. In this study, 15 large-shots data of a deep reflection seismic profile across the lateral collision zone of the Qinghai-Tibet Plateau were processed by static correction, denoising and single coverage stack imaging. The results show that the skeleton characteristics of the lithospheric structure in the lateral collision zone are:(1) Strong reflection (Tc) appearing between TWT 8 to 10 s divides the crust into upper and lower layers; Tc may be a large scale detachment surface in the crust, which decouples the deformation of the upper crust from the lower crust; (2) Moho discontinuity reflection (Tm) is a narrow-band reflection wave with 3~4 coaxial axes, discontinuous lateral traceability, and recognizable offset at the position of regional faults across; (3) There are two reflection wave groups (TL) dipping opposite each other beneath the Lanping-Simao massif at TWT21 s and TWT22~24 s beneath the western margin of Yangtze craton. The crustal structure skeleton composed of Tc, Tm and TL outlines briefly the hierarchical dynamic model of lithospheric mantle convergence, crustal block lateral slip and upper crust thin-skinned thrust or slip under the section. This deformation pattern of the lithosphere is obviously different from the "Gangdise model", which is dominated by forward collision, crustal shortening and vertical thickening.
Balling N. 2000. Deep seismic reflection evidence for ancient subduction and collision zones within the continental lithosphere of northwestern Europe. Tectonophysics, 329(1-4):269-300. Bao X W, Sun X X, Xu M J, et al. 2015. Two crustal low velocity channels beneath SE Tibet revealed by joint inversion of Rayleigh wave dispersion and receiver functions. Earth and Planetary Science Letters, 415:16-24. Beaumont C, Jamieson R A, Nguyen M H, et al. 2001. Himalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation. Nature, 414(6865):738-742 Brown L D. 2013. Sub-Moho reflectors, mantle faults and lithospheric rheology. American Geophysical Union. AGU Fall Meeting Abstracts. Chen Y, Xu Y G, Xu T, et al. 2015. Magmatic underplating and crustal growth in the Emeishan Large Igneous Province, SW China, revealed by a passive seismic experiment. Earth and Planetary Science Letters, 432:103-114. Clark M K, Royden L H. 2000. Topographic ooze:building the eastern margin of Tibet by lower crustal flow. Geology, 28(8):703-706. Clowes R M, Calvert A J, Eaton D W, et al. 1996. Lithoprobe reflection studies of Archean and Proterozoic crust in Canada. Tectonophysics, 264(1-4):65-88. Cook F A, Van Der Velden, Hall K W, et al. 1999. Frozen subduction in Canada's Northwest Territories:Lithoprobe deep lithospheric reflection profiling of the western Canadian shield. Tectonics, 18(1):1-24. Cook F A, Clowes R M, Snyder D B, et al. 2004. Precambrian crust beneath the Mesozoic northern Canadian Cordillera discovered by Lithoprobe seismic reflection profiling. Tectonics, 23(2):TC2010, doi:10.1029/2002TC001412. Dewey J, Hempton M, Kidd W, et al. 1986. Shortening of continental lithosphere:the neotectonics of Eastern Anatolia-a young collision zone.//Coward M, Ries A, eds. Collision Tectonics. London:Blackwell Scientific Publication.3-36. Dong S W, Gao R, Yin A, et al. 2013. What drove continued continent-continent convergence after ocean closure? Insights from high-resolution seismic-reflection profiling across the Daba Shan in central China. Geology, 41(6):671-674, doi:10.1130/G34161.1. Feng S Y, Liu B J, Deng X J, et al. 2017. Shallow and deep structural characteristics of the west branch of the Nantinghe fault:Evidence from deep seismic reflection profiling. Chinese Journal of Geophysics (in Chinese), 60(10):3863-3871, doi:10.6038/cjg20171016. Fuis G S, Levander A R, Lutter W J, et al. 1995. Seismic images of the Brooks Range, Arctic Alaska, reveal crustal-scale duplexing. Geology, 23(1):65-68. Gao R, Li P W, Li Q S, et al. 2001. Deep process of the collision and deformation on the northern margin of the Tibetan Plateau:Revelation from investigation of the deep seismic profiles. Science in China Series D:Earth Sciences, 44(S1):71-78. Gao R, Chen C, Wang H Y, et al. 2016. SINOPROBE deep reflection profile reveals a Neo-Proterozoic subduction zone beneath Sichuan Basin. Earth and Planetary Science Letters, 454:86-91. Hou Z Q, Zhong D L, Deng W M. 2004. A tectonic model for porphyry copper-molybdenum-gold metallogenic belts on the eastern margin of the Qinghai-Tibet Plateau. Geology in China (in Chinese), 31(1):1-14. Hou Z Q, Yang Z S, Xu W Y, et al. 2006a. Metallogenesis in Tibetan collisional orogenic belt:I. Mineralization in main collisional orogenic setting. Mineral Deposits (in Chinese), 25(4):337-358. Hou Z Q, Pan G T, Wang A J, et al. 2006b. Metallogenesis in Tibetan collisional orogenic belt:Ⅱ. Mineralization in late-collisional transformation setting. Mineral Deposits (in Chinese), 25(5):521-543. Hou Z Q, Song Y C, Li Z, et al. 2008. Thrust-controlled, sediments-hosted Pb-Zn-Ag-Cu deposits in eastern and northern margins of Tibetan orogenic belt:Geological features and tectonic model. Mineral Deposits (in Chinese), 27(2):123-144. Hou Z Q, Hong R Z. 2015. Geodynamics and metallogeny of the eastern Tethyan metallogenic domain. Ore Geology Reviews, 70:346-384. Jarchow C M, Goodwin E B, Catchings R D. 1990. Are large explosive sources applicable to resource exploration?. The Leading Edge, 9(1):12-17. Klemperer S L, Hauge T A, Hauser E C, et al. 1986. The Moho in the northern Basin and Range Province, Nevada, along the COCORP 40 C seismic-reflection transect. GSA Bulletin, 97(5):603-618. Li H Q, Gao R, Wang H Y, et al. 2013. Extracting the Moho structure of Liupanshan by the method of near vertical incidence. Chinese Journal of Geophysics (in Chinese), 56(11):3811-3818, doi:10.6038/cjg20131122. Li H Q, Gao R, Wang H Y, et al. 2014. Imaging the lower crust and upper mantle beneath between Qinling and Dabashan by big shots from deep seismic reflection in China. Progress in Geophysics (in Chinese), 29(1):102-109, doi:10.6038/pg20140113. Li H Q, Gao R, Wang H Y, et al. 2016. Near vertical deep seismic reflection profile reveal the sketch of Qinling Mountains orogenic belt-Weihe graben-Ordos block's Moho by big charge shots. Chinese Journal of Geology (in Chinese), 51(1):67-75. Li H Q, Gao R, Li W H, et al. 2018. The Moho structure beneath the Yarlung Zangbo Suture and its implications:Evidence from large dynamite shots. Tectonophysics, 747-748:390-401. Li Q S, Gao R, Wang H Y, et al. 2009. 200-kg large explosive detonation facing 50-km thick crust beneath west Qinling, northeastern Tibetan plateau. Earthquake Science, 22(4):389-393. Li Q S, Gao R, Wang H Y, et al. 2011. Lithospheric structure of northeastern Sichuan-Dabashan basin-range system and top-deep deformation coupling. Acta Petrologica Sinica (in Chinese), 27(3):612-620. Li Q S, Feng S Y, Bai Z M, et al. 2018. New research progress on crust-upper mantle structure in the Southeastern margin of Qinghai-Tibetan plateau, China. Journal of Earth Sciences and Environment (in Chinese), 40(6):757-778. Li T, Lie F. 1992. A preliminary research on the model of Xizang (Tibet) continental crust and its chemical composition. Journal of University of Science and Technology of China (in Chinese), 22(4):409-415. Li W H, Gao R, Wang H Y, et al. 2012. Research on structure information recognition of deep seismic reflection profiles. Chinese Journal of Geophysics (in Chinese), 55(12):4138-4146, doi:10.6038/j.issn.0001-5733.2012.12.026. Li Y H, Wu Q J, Zhang R Q, et al. 2008. The crust and upper mantle structure beneath Yunnan from joint inversion of receiver functions and Rayleigh wave dispersion data. Physics of the Earth and Planetary Interiors, 170(1-2):134-146. Liu B J, Zhang X K, Chen Y, et al. 2011. Research on crustal structure and active fault in the Sanhe-Pinggu Earthquake (M8.0) Zone based on single-fold deep seismic reflection and shallow seismic reflection profiling. Chinese Journal of Geophysics (in Chinese), 54(5):1251-1259, doi:10.3969/j.issn.0001-5733.2011.05.014. Liu B J, Feng S Y, Ji J F, et al. 2015. Fine lithosphere structure beneath the Middle-southern segment of the Tan-Lu fault zone. Chinese Journal of Geophysics (in Chinese), 58(5):1610-1621, doi:10.6038/cjg20150513. Liu B J, Feng S Y, Ji J F, et al. 2017. Lithospheric structure and faulting characteristics of the Helan Mountains and Yinchuan Basin:Results of deep seismic reflection profiling. Science China Earth Sciences, 60(3):589-601, doi:10.1007/s11430-016-5069-4. Liu Z, Tian X B, Chen Y, et al. 2017. Unusually thickened crust beneath the Emeshan large igneous province detected by virtual deep seismic sounding. Tectonophysics,721:387-394. Louie J N, Clayton R W, LeBras R J. 1988. Three-dimensional imaging of steeply dipping structure near the San Andreas fault, Parkfield, California. Geophysics, 53(2):176-185. Lu J M. 1993. The Principle of Seismic Exploration (in Chinese). Dongying:Petroleum University Publishing House. Lu Z W, Gao R, Li Q S, et al. 2009. Testing deep seismic reflection profiles across the central uplift of the Qiangtang terrane in the Tibetan Plateau. Chinese Journal of Geophysics (in Chinese), 52(8):2008-2014, doi:10.3969/j.issn.0001.5733.2009.08.008. Wang H Y, Gao R, Lu Z W, et al. 2006. Precursor of detecting the interior earth:Development and applications of deep seismic reflection. Progress in Exploration Geophysics (in Chinese), 29(1):7-13, 19. Wang H Y, Gao R, Lu Z W, et al. 2010. Fine structure of the continental lithosphere circle revealed by deep seismic reflection profile. Acta Geologica Sinica (in Chinese), 84(6):818-839. Wang S J, Liu B J, Zhang J S, et al. 2015. Study on the velocity structure of the crust in southwest Yunnan of the north-south seismic belt-Results from the Menghai-Gengma-Lushui deep seismic sounding profile. Science China Earth Science, 58(12):2175-2187. Wu Y, Gao Y. 2019. Gravity pattern in southeast margin of Tibetan Plateau and its implications to tectonics and large earthquakes. Earth and Planetary Physics, 3(5):425-434. Xu Z Q, Yang J S, Qi X X, et al. 2006a. India-Asia collision:A further discussion of N-S-and E-W-trending detachments and the orogenic mechanism of the modern Himalayas. Geological Bulletin of China (in Chinese), 25(1):1-14. Xu Z Q, Yang J S, Li H B, et al. 2006b. The Qinghai-Tibet plateau and continental dynamics:A review on terrain tectonics, collisional orogenesis, and processes and mechanisms for the rise of the plateau. Geology in China (in Chinese), 33(2):221-238. Xue G Q, Wu Z H, Zhao W J, et al. 2014. A tomography study of the broad-band Seismic profiling across Gangdise Block. Acta Geoscientica Sinica (in Chinese), 35(6):715-718. Yao H J, Beghein C, Van Der Hilst R D. 2008. Surface wave array tomography in SE Tibet from ambient seismic noise and two-station analysis-II. Crustal and upper-mantle structure. Geophysical Journal International, 173(1):205-219. Zhang Z, Zhao B, Zhang X, et al. 2006. Crustal structure beneath the wide-angle seismic profile between Simao and Zhongdian in Yunnan. Chinese Journal of Geophysics (in Chinese), 49(5):1377-1384. Zhang Z Q, Gao Y. 2019. Crustal thicknesses and Poisson's ratios beneath the Chuxiong-Simao Basin in the southeast margin of the Tibetan Plateau. Earth and Planetary Physics, 3(1):69-84. Zhao L F, Xie X B, He J K, et al. 2013. Crustal flow pattern beneath the Tibetan Plateau constrained by regional Lg-wave Q tomography. Earth and Planetary Science Letters, 383:113-122, doi:10.1016/j.epsl.2013.09.038. Zhao W J, Nelson K D, Che J, et al. 1996. Deep seismic reflection evidence for continental underthrusting beneath southern Tibet. Nature, 366(6455):557-559. 附中文参考文献 酆少英, 刘保金, 邓小娟等. 2017. 南汀河西支断裂深浅构造特征——来自深地震反射剖面的证据. 地球物理学报, 60(10):3863-3871, doi:10.6038/cjg20171016. 高锐, 李朋武, 李秋生等. 2001. 青藏高原北缘碰撞变形的深部过程——深地震探测成果之启示. 中国科学(D辑), 31(S1):66-71. 侯增谦, 钟大赉, 邓万明. 2004. 青藏高原东缘斑岩铜钼金成矿带的构造模式. 中国地质, 31(1):1-14. 侯增谦, 杨竹森, 徐文艺等. 2006a. 青藏高原碰撞造山带:Ⅰ.主碰撞造山成矿作用. 矿床地质, 25(4):337-358. 侯增谦, 潘桂棠, 王安建等. 2006b. 青藏高原碰撞造山带:Ⅱ.晚碰撞转换成矿作用. 矿床地质, 25(5):521-543. 侯增谦, 宋玉财, 李政等. 2008. 青藏高原碰撞造山带Pb-Zn-Ag-Cu矿床新类型:成矿基本特征与构造控矿模型. 矿床地质, 27(2):123-144. 李洪强, 高锐, 王海燕等. 2013. 用近垂直方法提取莫霍面——以六盘山深地震反射剖面为例. 地球物理学报, 56(11):3811-3818, doi:10.6038/cjg20131122. 李洪强, 高锐, 王海燕等. 2014. 用深反射大炮对大巴山-秦岭结合部位的地壳下部和上地幔成像. 地球物理学进展, 29(1):102-109, doi:10.6038/pg20140113. 李洪强, 高锐, 王海燕等. 2016. 深反射大炮数据揭示北秦岭-渭河地堑-鄂尔多斯南部Moho格架. 地质科学, 51(1):67-75. 李秋生, 高锐, 王海燕等. 2011. 川东北-大巴山盆山体系岩石圈结构及浅深变形耦合. 岩石学报, 27(3):612-620. 李秋生, 酆少英, 白志明等. 2018. 青藏高原东南缘壳幔结构探测研究新进展. 地球科学与环境学报, 40(6):757-778. 黎彤, 李峰. 1992. 西藏地壳模型及其化学成分初探. 中国科学技术大学学报, 22(4):409-415. 刘保金, 酆少英, 姬计法等. 2015. 郯庐断裂带中南段的岩石圈精细结构. 地球物理学报, 58(5):1610-1621, doi:10.6038/cjg20150513. 李文辉, 高锐, 王海燕等. 2012. 深地震反射剖面构造信息识别研究. 地球物理学报, 55(12):4138-4146, doi:10.6038/j.issn.0001-5733.2012.12.026. 刘保金, 张先康, 陈颙等. 2011. 三河-平谷8.0级地震区地壳结构和活动断裂研究——利用单次覆盖深反射和浅层地震剖面. 地球物理学报, 54(5):1251-1259, doi:10.3969/j.issn.0001-5733.2011.05.014. 刘保金, 酆少英, 姬计法等. 2017. 贺兰山和银川盆地的岩石圈结构和断裂特征——深地震反射剖面结果. 中国科学:地球科学, 47(2):179-190, doi:10.1360/N072016-00069. 陆基孟. 1993. 地震勘探原理. 东营:石油大学出版社. 卢占武, 高锐, 李秋生等. 2009. 横过青藏高原羌塘地体中央隆起区的深反射地震试验剖面. 地球物理学报, 52(8):2008-2014, doi:10.3969/j.issn.0001.5733.2009.08.008. 王海燕, 高锐, 卢占武等. 2006. 地球深部探测的先锋——深地震反射方法的发展与应用. 勘探地球物理进展, 29(1):7-13, 19. 王海燕, 高锐, 卢占武等. 2010. 深地震反射剖面揭露大陆岩石圈精细结构. 地质学报, 84(6):818-839. 王帅军, 刘保金, 张建狮等. 2015. 南北地震带滇西南地区地壳速度结构与构造研究:勐海-耿马-泸水深地震探测剖面结果. 中国科学:地球科学, 45(12):1853-1865. 许志琴, 杨经绥, 戚学祥等. 2006a. 印度/亚洲碰撞——南北向和东西向拆离构造与现代喜马拉雅造山机制再讨论. 地质通报, 25(1):1-14. 许志琴, 杨经绥, 李海兵等. 2006b. 青藏高原与大陆动力学——地体拼合、碰撞造山及高原隆升的深部驱动力. 中国地质, 33(2):221-238. 薛光琦, 吴珍汉, 赵文津等. 2014. 穿越冈底斯地体的宽频地震探测研究. 地球学报, 35(6):715-718. 张智, 赵兵, 张晰等. 2006. 云南思茅-中甸地震剖面的地壳结构. 地球物理学报, 49(5):1377-1384.