YANG WenCai,
JIN Sheng,
ZHANG LuoLei et al
.2020.The three-dimensional resistivity structures of the lithosphere beneath the Qinghai-Tibet Plateau Chinese Journal of Geophysics(in Chinese),63(3): 817-827,doi: 10.6038/cjg2020N0197
The three-dimensional resistivity structures of the lithosphere beneath the Qinghai-Tibet Plateau
YANG WenCai1,2, JIN Sheng2, ZHANG LuoLei3, QU Chen4, HU XiangYun5, WEI WenBo2, YU ChangQing4, YU Peng3
1. School of Earth Sciences, Zhejiang University, Hangzhou 310027, China; 2. School of Geophysics and Information Technology, China University of Geosciences(Beijing), Beijing 100083, China; 3. State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092, China; 4. Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China; 5. Institute of Geophysics&Geomatics, China University of Geosciences(Wuhan), Wuhan 430074, China
Abstract:After multi-team researches in relays, our magnetotelluric investigations have covered most of area of Qinghai-Tibet Plateau, providing a reliable foundation for the study of three-dimensional lithosphere resistivity imaging. A reliable three-dimensional resistivity image set of the Qinghai-Tibet Plateau is obtained by fine assimilation, fusion, processing and inversion of the magnetotelluric data. The imaging area is 28°N-35°N and 80°E-104°E. The mesh size used in the three-dimensional inversion is 20 km by 20 km, the vertical direction is divided into 26 layers with the unequal spacing down to 200 km. The results show that the current lithospheric resistivity anomalies in the Qinghai-Tibet Plateau mainly reflects the thermal fluid movement caused by the subduction of the Indian craton to the Eurasian Plate. In the lithosphere mantle, the Zayu block, the Himalaya block and the eastern part of the Lhasa block are linked to a unified high resistivity anomaly, which reflects the Indian craton subduction to the northeast. The low resistance zone in the eastern Qinghai-Tibet Plateau expands downwards along the 100°E, reflecting the trend of the Jinsha River fault zone cutting through the lithosphere. The disturbance patterns of mantle resistivity clearly show that the splicing format of terranes in the east and west parts of the Qinghai-Tibet Plateau is different. In the western part of the Qinghai-Tibet Plateau, the terranes of Qiangtang, Lhasa and Himalaya are combined along direction from north to south. In the eastern part of the Qinghai-Tibet Plateau, Qiangtang-Lhasa, Zayu, Indochina, Yaan and Yangtze terranes are combined along direction from west to east. The combination of the west terranes has occurred first, and a wide range of deformation structures have been formed in the crust, including orthogonal detachment bands and rift systems. In the east part, the terranes have been combining afterwards, extensive deformation is being caused in the crust, including the non-orthogonal disassembly belts and the pressure-rotational tectonic systems. From the distribution pattern of the high-to-low resistance zones we see that the geological processes going on the east Qinghai-Tibet Plateau has a deep mantle roots, which will further develope in the future.
Chen X, Yu P, Zhang L L, et al. 2011. Adaptive regularized synchronous joint inversion of MT and seismic data. Chinese Journal of Geophysics (in Chinese), 54(10):2673-2681, doi:10.3969/j.issn.0001-5733.2011.10.024. Dong H, Wei W B, Ye G F, et al. 2012. Study of two dimensional magnetotelluric inversions of complex three dimensional structures. Chinese Journal of Geophysics (in Chinese), 55(12):4003-4014, doi:10.6038/j.issn.0001-5733.2012.12.012. Gong X G, Wei W B, Jin S, et al. 2012. Application of CS3301 to the long-period MT instrument. Chinese Journal of Geophysics (in Chinese), 55(12):4051-4057. Jin S, Wei W B, Ye G F, et al. 2009. The electrical structure of Bangong-Nujiang suture:results from magnetotelluric sounding detection. Chinese Journal ofGeophysics (in Chinese), 52(10):2666-2675, doi:10.3969/j.issn.0001-5733.2009.10.027. Jin S, Wei W B, Wang S, et al. 2010. Discussion of the formation and dynamic signification of the high conductive layer in Tibetan crust. Chinese Journal of Geophysics (in Chinese), 53(10):2376-2385, doi:10.3969/j.issn.0001-5733.2010.10.011. Jin S, Zhang L T, Jin Y J, et al. 2012. Crustal electrical structure along the Hezuo-Dajing profile across the northeastern margin of the Tibetan Plateau. Chinese Journal of Geophysics (in Chinese), 55(12):3979-3990, doi:10.6038/j.issn.0001-5733.2012.12.010. Ouro-Djobo S B, Wei W B, Ye G F, et al. 2018. Experiments of magnetotelluric observation network on North China and lithospheric conductivity structure from fast imaging method. Chinese Journal of Geophysics (in Chinese), 61(6):2508-2524, doi:10.6038/cjg2018L0695. Sun J, Jin G W, Bai D H, et al. 2003. Sounding of electrical structure of the crust and upper mantle along the eastern border of Qinghai-Tibet Plateau and its tectonic significance. Science in China Series D:Earth Sciences, 46(S2):243-253. Sun Y Y, Yang W C, Hou Z Z, et al. 2015. Deformation scratches and crustal structures in Qinghai-Xizang (Tibet) plateau. Geological Review (in Chinese), 61(2):269-280. Tan H D, Wei W B, Unsworth M, et al. 2004. Crustal electrical conductivity structure beneath the Yarlung Zangbo Jiang suture in the southern Xizang plateau. Chinese Journal of Geophysics (in Chinese), 47(4):685-690, doi:10.3321/j.issn:0001-5733.2004.04.020. Wang G, Wei W B, Jin S, et al. 2017. A study on the electrical structure of eastern Gangdese metallogenic belt. Chinese Journal of Geophysics (in Chinese), 60(8):2993-3003, doi:10.6038/cjg20170808. Wang J Y. 2015. Geothermics and Its Applications (in Chinese). Beijing:Science Press. Wei W B, Jin S, Ye G F, et al. 2006. Conductivity structure of crust and upper mantle beneath the northern Tibetan Plateau:Results of super-wide band magnetotelluric sounding. Chinese Journal of Geophysics (in Chinese), 49(4):1215-1225. Xie C L, Ye G F, Wei W B, et al. 2012. Electrical features of the main faults beneath Northern Tibetan Plateau. Chinese Journal of Geophysics (in Chinese), 55(12):3991-4002, doi:10.6038/j.issn.0001-5733.2012.12.011. Yang W C, Wei W B, Jin S, et al. 2011. Experimental study of the continental standard grid of electromagnetic parameters:An introduction to project SinoProbe-01. Acta Geoscientia Sinica (in Chinese), 32(Suppl.1):24-33. Yang W C, Hou Z Z, Yu C Q. 2015a. Three-dimensional density structure of the Tibetan plateau and crustal mass movement. Chinese Journal of Geophysics (in Chinese), 58(11):4223-4234, doi:10.6038/cjg20151128. Yang W C, Sun Y Y, Yu C Q. 2015b. Crustal density deformation zones of Qinghai-Tibet Plateau and their geological implications. Chinese Journal of Geophysics (in Chinese), 58(11):4115-4128, doi:10.6038/cjg20151119. Yang W C, Hou Z Z, Yu C Q. 2015c. 3D crustal density structure of West Yunnan and its tectonic implications. Chinese Journal of Geophysics (in Chinese), 58(11):3902-3916, doi:10.6038/cjg20151102. Yang W C, Xu Y X, Zhang L L, et al. 2015d. Magnetotelluric investigation and 3D lithospheric structures in the Tarim terrane. Acta Geologica Sinica (in Chinese), 89(7):1151-1161. Yang W C, Zhang L L, Xu Y X, et al. 2015e. Three dimensional electrical resistivity structures of the Tarim Basin. Acta Geologica Sinica (in Chinese), 89(12):2203-2212. Yang W C, Hou Z Z, Xu Y X, et al. 2017. A study on thermal deformation and lower crust channel flows in Qinghai-Xizang (Tibet) plateau. Geological Review (in Chinese), 63(5):1141-1152. Yang W C, Qu C, Ren H R, et al. 2019a. Crustal P-wave Seismic tomography of the Qinghai-Xizang (Tibetan) Plateau. Geological Review (in Chinese), 65(1):2-14. Yang W C, Jiang J S, Qu C, et al. 2019b. A study on origin of Cenozoic rifts in Qinghai-Xizang (Tibetan) plateau. Geological Review (in Chinese), 65(2):267-279. Yang W C, Qu C, Ren H R, et al. 2019c. The asthenosphere of the Qinghai-Xizang (Tibetan) Plateau and subduction of the Tethys Ocean. Geological Review (in Chinese), 65(3):521-532. Yin Y T, Wei W B, Ye G F, et al. 2012. An improved GB decomposition method based on genetic algorithm. Chinese Journal of Geophysics (in Chinese), 55(2):671-682, doi:10.6038/j.issn.0001-5733.2012.02.031. Zeng S H, Hu X Y, Li J H, et al. 2015. Detection of the deep crustal structure of the Qiangtang terrane using magnetotelluric imaging. Tectonophysics, 661:180-189. Zhang L L, Yu P, Wang J L, et al. 2009. Smoothest model and sharp boundary based two-dimensional magnetotelluric inversion. Chinese Journal of Geophysics (in Chinese), 52(6):1625-1632, doi:10.3969/j.issn.0001-5733.2009.06.025. Zhang L L, Yu P, Wang J L, et al. 2010. A study on 2D magnetotelluric sharp boundary inversion. Chinese Journal of Geophysics (in Chinese), 53(3):631-637, doi:10.3969/j.issn.0001-5733.2010.03.017. Zhang L L, Koyama T, Utada H, et al. 2012. A regularized three-dimensional magnetotelluric inversion with a minimum gradient support constraint. Geophys. J. Int., 189(1):296-316. Zhao G Z, Chen X B, Wang L F, et al. 2008. Evidence of crustal ‘channel flow’ in the eastern margin of Tibetan Plateau from MT measurements. Chinese Science Bulletin, 53(12):1887-1893. 附中文参考文献 陈晓, 于鹏, 张罗磊等. 2011. 地震与大地电磁测深数据的自适应正则化同步联合反演. 地球物理学报, 54(10):2673-2681, doi:10.3969/j.issn.0001-5733.2011.10.024. 董浩, 魏文博, 叶高峰等. 2012. 大地电磁测深二维反演方法求解复杂电性结构问题的适应性研究. 地球物理学报, 55(12):4003-4014, doi:10.6038/j.issn.0001-5733.2012.12.012. 巩秀钢, 魏文博, 金胜等. 2012. CS3301在长周期大地电磁测深仪中的应用研究. 地球物理学报, 55(12):4051-4057. 金胜, 魏文博, 叶高峰等. 2009. 班公-怒江构造带的电性结构特征——大地电磁探测结果. 地球物理学报, 52(10):2666-2675, doi:10.3969/j.issn.0001-5733.2009.10.027. 金胜, 魏文博, 汪硕等. 2010. 青藏高原地壳高导层的成因及动力学意义探讨:大地电磁探测提供的证据. 地球物理学报, 53(10):2376-2385, doi:10.3969/j.issn.0001-5733.2010.10.011. 金胜, 张乐天, 金永吉等. 2012. 青藏高原东北缘合作-大井剖面地壳电性结构研究. 地球物理学报, 55(12):3979-3990, doi:10.6038/j.issn.0001-5733.2012.12.010. Ouro-Djobo S B, 魏文博, 叶高峰等. 2018. 华北大地电磁测深阵列观测实验与岩石圈导电性快速成像模型. 地球物理学报, 61(6):2508-2524, doi:10.6038/cjg2018L0695. 孙艳云, 杨文采, 侯遵泽等. 2015. 青藏高原刻痕与地壳分层构造. 地质论评, 61(2):269-280. 谭捍东, 魏文博, Unsworth M等. 2004. 西藏高原南部雅鲁藏布江缝合带地区地壳电性结构研究. 地球物理学报, 47(4):685-690, doi:10.3321/j.issn:0001-5733.2004.04.020. 王刚, 魏文博, 金胜等. 2017. 冈底斯成矿带东段的电性结构特征研究. 地球物理学报, 60(8):2993-3003, doi:10.6038/cjg20170808. 汪集旸. 2015. 地热学及其应用. 北京:科学出版社. 魏文博, 金胜, 叶高峰等. 2006. 藏北高原地壳及上地幔导电性结构——超宽频带大地电磁测深研究结果. 地球物理学报, 49(4):1215-1225. 谢成良, 叶高峰, 魏文博等. 2012. 藏北高原主要断裂带电性结构特征. 地球物理学报, 55(12):3991-4002, doi:10.6038/j.issn.0001-5733.2012.12.011. 杨文采, 魏文博, 金胜等. 2011. 大陆电磁参数标准网实验研究——SinoProbe-01项目介绍. 地球学报, 32(Suppl.1):24-33. 杨文采, 侯遵泽, 于常青. 2015a. 青藏高原地壳的三维密度结构和物质运动. 地球物理学报, 58(11):4223-4234, doi:10.6038/cjg20151128. 杨文采, 孙艳云, 于常青. 2015b. 青藏高原地壳密度变形带及构造分区. 地球物理学报, 58(11):4115-4128, doi:10.6038/cjg20151119. 杨文采, 侯遵泽, 于常青. 2015c. 滇西地壳三维密度结构及其大地构造含义. 地球物理学报, 58(11):3902-3916, doi:10.6038/cjg20151102. 杨文采, 徐义贤, 张罗磊等. 2015d. 塔里木地体大地电磁调查和岩石圈三维结构. 地质学报, 89(7):1151-1161. 杨文采, 张罗磊, 徐义贤等. 2015e. 塔里木盆地的三维电阻率结构. 地质学报, 89(12):2203-2212. 杨文采, 侯遵泽, 徐义贤等. 2017. 青藏高原下地壳热变形和管道流研究. 地质论评, 63(5):1141-1152. 杨文采, 瞿辰, 任浩然等. 2019a. 青藏高原地壳地震纵波速度的层析成像. 地质论评, 65(1):2-14. 杨文采, 江金生, 瞿辰等. 2019b. 西藏新生代裂谷系成因的探讨. 地质论评, 65(2):267-279. 杨文采, 瞿辰, 任浩然等. 2019c. 青藏高原软流圈与特提斯洋板块俯冲. 地质论评, 65(3):521-532. 尹曜田, 魏文博, 叶高峰等. 2012. 基于遗传算法的大地电磁阻抗张量分解方法研究. 地球物理学报, 55(2):671-682, doi:10.6038/j.issn.0001-5733.2012.02.031. 张罗磊, 于鹏, 王家林等. 2009. 光滑模型与尖锐边界结合的MT二维反演方法. 地球物理学报, 52(6):1625-1632, doi:10.3969/j.issn.0001-5733.2009.06.025. 张罗磊, 于鹏, 王家林等. 2010. 二维大地电磁尖锐边界反演研究. 地球物理学报, 53(3):631-637, doi:10.3969/j.issn.0001-5733.2010.03.017.