LIANG Lei,
YU JinHai,
ZHU YongChao et al
.2019.Recovered GRACE time-variable gravity field based on dynamic approach with the non-linear corrections Chinese Journal of Geophysics(in Chinese),62(9): 3259-3268,doi: 10.6038/cjg2019M0331
Recovered GRACE time-variable gravity field based on dynamic approach with the non-linear corrections
LIANG Lei1,2, YU JinHai1,2, ZHU YongChao3, WAN XiaoYun4, CHANG Le1,2, XU Huan1,2, WANG Kai5
1. Key Laboratory of Computational Geodynamics, Chinese Academy of Sciences, Beijing 100049, China; 2. College of Earth and Planetary Science, University of Chinese Academy of Sciences, Beijing 100049, China; 3. Shandong Jiaotong University, Jinan 250357, China; 4. School of Land Science and Technology, China University of Geosciences(Beijing), Beijing 100083, China; 5. Center for Engineering Design and Research under the Headquarters of General Equipment, Beijing 100028, China
Abstract:In this paper, the system of orbital perturbation equation is solved by using the superposition principle of solutions, and the observational equations of disturbance potential coefficients with orbital perturbation and range rate introducing non-linear correction term separately are derived. The state transition equations are solved by coordinate transformation between inertial coordinate system and moving coordinate system, the low-frequency error characteristics of the observation equations are analyzed, and the five-parameter or seven-parameter empirical formula for eliminating the low-frequency error of residual range rate is derived. In addition, the cubic spline function is proposed to deal with the low-frequency error according to the characteristic that the non-inertial force error model is segmentally calibrated. The simulation results show that the cubic spline function is slightly better than seven parameters in dealing with the low-frequency error. Finally, by processing the actual GRACE Level-1b data, the monthly time-varying gravity field model UCAS_Grace01 from January 2006 to December 2009 is solved and it can be concluded that the time-varying gravity field model computed in this paper is basically consistent with the international official institution model in accuracy by comparing in different regions.
Bettadpur S. 2009. Recommendation for a-priori bias and scale parameters for Level-1B ACC Data (Version 2). GRACE TN-02. Bettadpur S. 2012. Gravity recovery and climate experiment UTCSR Level-2 Processing standards document for level-2 product release 0005. Center for Space Research. Univ. of Texas. Austin. Bruinsma S, Lemoine J M, Biancale R, et al. 2010. CNES/GRGS 10-day gravity field models (release 2) and their evaluation. Advances in Space Research, 45(4):587-601. Case K, Kruizinga G, Wu S. 2010. GRACE level 1B data product user handbook. JPL Publication D-22027. Chen Q J, Shen Y Z, Zhang X F, et al. 2015. Tongji-GRACE01:A GRACE-only static gravity field model recovered from GRACE Level-1B data using modified short arc approach. Advances in Space Research, 56(5):941-951. Chen Q J, Shen Y Z, Chen W, et al. 2016. An improved GRACE monthly gravity field solution by modeling the non-conservative acceleration and attitude observation errors. Journal of Geodesy, 90(6):503-523. Cheng M K, Tapley B D. 2004. Variations in the Earth's oblateness during the past 28 years. Journal of Geophysical Research:Solid Earth, 109(B9):B09402, doi:10.1029/2004JB003028. Colombo O L. 1984. The global mapping of gravity with two satellites. Delft, Holland:Netherlands Geodetic Commission. Dahle C, Flechtner F, Gruber C, et al. 2012. GFZ GRACE Level-2 Processing Standards Document for Level-2 Product Release 0005.Scientific Technical Report-Data. Ditmar P, da Encarnação J T, Farahani H H. 2012. Understanding data noise in gravity field recovery on the basis of inter-satellite ranging measurements acquired by the satellite gravimetry mission GRACE. Journal of Geodesy,86(6):441-465. Han S C, Jekeli C, Shum C K. 2004. Time-variable aliasing effects of ocean tides, atmosphere, and continental water mass on monthly mean GRACE gravity field. Journal of Geophysical Research:Solid Earth,109(B4):B04403, doi:10.1029/2003JB002501. Han S C, Shum C K, Jekeli C. 2006. Precise estimation of in situ geopotential differences from GRACE low-low satellite-to-satellite tracking and accelerometer data. Journal of Geophysical Research:Solid Earth,111(B4):B04411, doi:10.1029/2005JB003719. Jekeli C. 1981. Alternative methods to smooth the Earth's gravity field. Report 327. Columbus:Department of Geodetic Science and Surveying, Ohio State University. Kaplan M H. 1976. Modern Spacecraft Dynamics & Control. New York:Wiley. Kim J. 2000. Simulation study of a low-low satellite-to-satellite tracking mission[Ph. D. thesis]. Austin:The University of Texas at Austin. Liu X, Ditmar P, Siemes C, et al. 2010. DEOS Mass Transport model (DMT-1) based on GRACE satellite data:methodology and validation. Geophysical Journal International, 181(2):769-788. Li Y S, Huang Y Q. 1978. Numerical Approximation(in Chinese). Beijing:People's Education Press. Luo Z C, Zhou H, Li Q, et al. 2016. A new time-variable gravity field model recovered by dynamic integral approach on the basis of GRACE KBRR data alone. Chinese J. Geophys. (in Chinese), 59(6):1994-2005, doi:10.6038/cjg20160606. Mayer-Gürr T, Eicker A, Kurtenbach E, et al. 2010. ITG-GRACE:Global static and temporal gravity field models from GRACE data.//Flechtner F M, Gruber T, Güntner A, et al eds. System Earth via Geodetic-Geophysical Space Techniques. Berlin, Heidelberg:Springer. Meyer U, Jäggi A, Beutler G. 2012. Monthly gravity field solutions based on GRACE observations generated with the Celestial Mechanics Approach. Earth and Planetary Science Letters, 345-348:72-80. Oki T, Sud Y C. 1998. Design of total runoff integrating pathways(TRIP)-A global river channel network. Earth Interact.,2(1):1-37. Ran J J, Xu H Z, Zhong M, et al. 2014. Global temporal gravity field recovery using GRACE data. Chinese J. Geophys. (in Chinese), 57(4):1032-1040, doi:10.6038/cjg20140402. Seo K W, Wilson C R, Chen J L, et al. 2008. GRACE's spatial aliasing error. Geophysical Journal International, 172(1):41-48. Swenson S, Wahr J. 2006. Post-processing removal of correlated errors in GRACE data. Geophysical Research Letters, 33(8):L08402, doi:10.1029/2005GL025285. Tapley B D, Bettadpur S, Ries J C, et al. 2004a. GRACE measurements of mass variability in the Earth system. Science, 305(5683):503-505. Tapley B D, Bettadpur S, Watkins M, et al. 2004b. The gravityrecovery and climate experiment:Mission overview and early results. Geophysical Research Letters, 31(9):L09607, doi:10.1029/2004GL019920. Visser P N A M. 2005. Low-low satellite-to-satellite tracking:a comparison between analytical linear orbit perturbation theory and numerical integration. Journal of Geodesy, 79(1-3):160-166. Wahr J, Swenson S, Zlotnicki V, et al. 2004. Time-variable gravity from GRACE:First results. Geophysical Research Letters, 31:L11501, doi:10.1029/2004GL019779. Wang C Q, Xu H Z, Zhong M, et al. 2015. An investigation on GRACE temporal gravity field recovery using the dynamic approach. Chinese J. Geophys.(in Chinese), 58(3):756-766, doi:10.6038/cjg20150306. Watkins M, Yuan D N. 2012. GRACE JPL level-2 processing standards documentfor level-2 product Release05. GRACE:327-744 (v 5.0). Xu P L. 2008. Position and velocity perturbations for the determination of geopotential from space geodetic measurements. Celestial Mechanics and Dynamical Astronomy,100(3):231-249. Yang F, Xu H Z, Zhong M, et al. 2017. GRACE global temporal gravity recovery through the radial basis function approach. Chinese J. Geophys. (in Chinese), 60(4):1332-1346, doi:10.6038/cjg20170409. Yu J H, Zhu Y C, Meng X C. 2017. The orbital perturbation differential equations with the non-linear corrections for CHAMP-like satellite. Chinese J. Geophys.(in Chinese),60(2):514-526, doi:10.6038/cjg20170207. Zhao Q L, Guo J, Hu Z G, et al. 2011. GRACE gravity field modeling with an investigation on correlation between nuisance parameters and gravity field coefficients. Advances in Space Research, 47(10):1833-1850. Zhou H, Luo Z C, Wu Y H, et al. 2016. Impact of geophysical model error for recovering temporal gravity field model. Journal of Applied Geophysics, 130:177-185. 附中文参考文献 李岳生, 黄友谦. 1978. 数值逼近. 北京:人民教育出版社. 罗志才, 周浩, 李琼等. 2016. 基于GRACE KBRR数据的动力积分法反演时变重力场模型. 地球物理学报, 59(6):1994-2005, doi:10.6038/cjg20160606. 冉将军, 许厚泽, 钟敏等. 2014. 利用GRACE重力卫星观测数据反演全球时变地球重力场模型. 地球物理学报, 57(4):1032-1040, doi:10.6038/cjg20140402. 王长青, 许厚泽, 钟敏等. 2015. 利用动力学方法解算GRACE时变重力场研究. 地球物理学报, 58(3):756-766, doi:10.6038/cjg20150306. 杨帆, 许厚泽, 钟敏等. 2017. 利用径向基函数RBF解算GRACE全球时变重力场. 地球物理学报, 60(4):1332-1346. doi:10.6038/cjg20170409. 于锦海, 朱永超, 孟祥超. 2017. CHAMP型卫星定轨顾及非线性改正的轨道扰动方程. 地球物理学报, 60(2):514-526, doi:10.6038/cjg20170207.