HE Lin,
CHU YongHai,
XU XinYu et al
.2019.Evaluation of the GRACE/GOCE Global Geopotential Model on estimation of the geopotential value for the China vertical datum of 1985 Chinese Journal of Geophysics(in Chinese),62(6): 2016-2026,doi: 10.6038/cjg2019M0364
Evaluation of the GRACE/GOCE Global Geopotential Model on estimation of the geopotential value for the China vertical datum of 1985
HE Lin1, CHU YongHai1,2, XU XinYu1,2, ZHANG TengXu1
1. School of Geodesy and Geomatics, Wuhan University, Wuhan 430079, China;
2. Key Laboratory of Geospace Environment and Geodesy, Ministry of Education, Wuhan 430079, China
The accuracy of the geopotential value of the vertical datum is usually relies on the high-precision Global Geopotential Models (GGMs), which are critical for high-precision uniformity of global and regional vertical datums or height systems. The advent of the GOCE and GRACE missions during the last decade have brought significant improvement in modelling of the low-frequency or rather medium-frequency part of the Earth's static gravity field. The GRACE/GOCE GGMs are extended from the degree and order nmax+1 to 2190 using EGM2008 in order to evaluated the effect of the omission error on the computed geopotential value of the China vertical datum of 1985, and the effect of the GRACE/GOCE GGMs omission error is at dm-level for China. The effect of the GRACE/GOCE GGMs omission error on the geopotential can be effectively reduced by extending the model with the high-resolution gravity field model EGM2008 and the optimal extend degree and order is difference based on the difference GRACE/GOCE GGMs, for example, the extend degree and order is 180 and 220 for DIR-1 and DIR-5. The GRACE/GOCE GGMs extended by the EGM2008 with the optimal extend degree and order provide a significant, compared to EGM2008, improvement in the comparisons with the GPS/Levelling data, by as much as 18 cm, in terms of the standard deviation. The W0LVD determined for the China local vertical datum was 62636853.47 m2·s-2 and 62636853.49 m2·s-2 for DIR-5 and TIM-5, and the accuracy both are 1.51 m2·s-2. Lastly, the spatial tilts found in the levelling network can be modeled with a 2-parameter bias corrector model, the east-west tilt is about 9 cm, and the north-south tilt is about 1.4 cm. Based on the DIR-5 or TIM-5 models, the accuracy of the geopotential value of the 1985 is improved about 0.16 m2·s-2.
Amjadiparvar B, Rangelova E V, Sideris M G, et al. 2013a. North American height datums and their offsets:The effect of GOCE omission errors and systematic levelling effects. Journal of Applied Geodesy, 7(1):39-50.
Amjadiparvar B, Sideris M G, Rangelova E V. 2013b. North American height datums and their offsets:Evaluation of the GOCE-based global geopotential models in Canada and the USA. Journal of Applied Geodesy, 7(3):191-203.
Amjadiparvar B, Rangelova E, Sideris M G. 2016. The GBVP approach for vertical datum unification:recent results in North America. Journal of Geodesy, 90(1):45-63.
Barthelme F. 2013. Definition of functionals of the geopotential and their calculation from spherical harmonic models. Scientific Technical Report STR09/02. Theory and formulas used by the calculation service of the International Centre for Global Earth Models (ICGEM) http://icgem.gfz-potsdam.de/ICGEM/.
Bruinsma S L, Marty J, Balmino G et al. 2010. GOCE gravity field recovery by means of the direct numerical method. Proceedings of the ESA Living Planet Symposium Lacoste-Francis H.Bergen, Norway 2010 June 28-July 2 ESA Publication SP-686. ESA/ESTEC.
Bruinsma S L, Förste C, Abrikosov O, et al. 2013. The new ESA satellite-only gravity field model via the direct approach. Geophysical Research Letters, 40(14):3607-3612.
?underlík R, Minarechová Z, Mikula K. Realization of WHS based on the static gravity field observed by GOCE.//Marti U ed. Gravity, Geoid and Height Systems. Cham:Springer, 211-220.
Gerlach C, Rummel R. 2013. Global height system unification with GOCE:a simulation study on the indirect bias term in the GBVP approach. Journal of Geodesy, 87(1):57-67.
Gruber T, Gerlach C, Haagmans R. 2013. Intercontinental height datum connection with GOCE and GPS-levelling data. Journal of Geodetic Science, 2(2):270-280.
Grigoriadis V N, Kotsakis C, Tziavos I N, et al. 2014. Estimation of the reference geopotential value for the local vertical datum of continental greece using EGM08 and GPS/Leveling Data.//Marti U ed. Gravity, Geoid and Height Systems. Cham:Springer, 88-89.
Guo H R, Jiao W H, Yang Y X. 2004. The systematic difference and its distribution between the 1985 national height datum and the global quasigeoid. Acta Geodaetica et Cartographica Sinica (in Chinese), 33(2):100-104.
Hayden T, Amjadiparvar B, Rangelova E, et al. 2012. Estimating Canadian vertical datum offsets using GNSS/levelling benchmark information and GOCE global geopotential models. Journal of Geodetic Science, 2(4):257-269.
He L, Li J C, Chu Y H. 2017. Evaluation of the geopotential value for the Local Vertical Datum of China using GRACE/GOCE GGMs and GPS/Leveling Data. Acta Geodaetica Et Cartographica Sinica (in Chinese), 46(7):815-823.
He L, Li J C, Chu Y H. 2016. The vertical shift between 1985 National Height Datum and Global Vertical Datum. Acta Geodaetica Et Cartographica Sinica (in Chinese), 45(7):768-774.
Heiskanen W A, Moritze H. 1967. Physical Geodesy. San Francisco:Freeman and Company.
Jiao W H, Wei Z Q, Ma X, et al. 2002. The origin vertical shift of National Height Datum 1985 with respect to the geoidal surface. Acta Geodaetica et Cartographica Sinica (in Chinese), 31(3):196-200.
Kotsakis C, Ampatzidis D. 2012. Estimation of the zero-height geopotential level LVD in a local vertical datum from inversion of co-located GPS, leveling and geoid heights:a case study in the Hellenic islands. Journal of Geodesy, 86(6):423-439.
LI J C, Chu Y H, Xu X Y. 2017. Determination of vertical datum offset between the regional and the global height datum. Acta Geodaetica et Cartographica Sinica (in Chinese), 46(10):1262G1273.
Liang W, Xu X Y, Li J C, et al. 2018. The determination of an ultra-high gravity field model SGG-UGM-1 by combining EGM2008 gravity anomaly and GOCE observation data. Acta Geodaetica Et Cartographica Sinica (in Chinese), 47(4) 425-434.
National Standards for First and Second Level Surveying (GB/T 12897-2006). State General Administration of the People's Republic of China for Quality Supervision and Inspection and Quarantine, promulgated by the Standardization Administration of the People's Republic of China, was implemented on October 1, 2006.
Pavlis N K, Holmes S A, Kenyon S C, et al. 2012. The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). Journal of Geophysical Research:Solid Earth, 117(B4):1-38.
Pail R, Goiginger H, Mayrhofer R, et al. 2010. GOCE gravity field model derived from orbit and gradiometry data applying the time-wise method. presented at the ESA Living Planet Symposium 2010, Bergen, June 27-July 2, Bergen, Noway, 2010a.
Pail R, Bruinsma S, Migliaccio F, et al. 2011. First GOCE gravity field models derived by three different approaches. Journal of Geodesy, 85(11):819-843.
Rummel R. 2012. Height unification using GOCE. Journal of Geodetic Science, 2(4):355-362.
Rummel R. 2010. GOCE:Gravitational gradiometry in a satellite.//Freeden W, Nashed M Z, Sonar T eds. Handbook of Geomathematics. Berlin,Heidelberg:doi:10.1007/978-3-642-01546-5_4.
Sánchez L, Dayoub N,?underlík R, et al. 2014. W0 estimates in the frame of the GGOS working group on vertical datum standardisation.//Marti U ed. Gravity, Geoid and Height Systems. Cham:Springer, 141:203-210.
Sánchez L,?underlík R, Dayoub N, et al. 2016. A conventional value for the geoid reference potential W0. Journal of Geodesy, 90(9):815-835.
Sánchez L, Sideris M G. 2017. Vertical datum unification for the International Height Reference System (IHRS). Geophysical Journal International, 209(2):570-586. doi:10.1093/gji/ggx025.
Tocho C, Vergos G S. 2015. Estimation of the Geopotential Value W0LVD for the Local Vertical Datum of Argentina Using EGM2008 and GPS/Levelling Data. International Association of Geodesy Symposia, Cham:Springer. doi:10.1007/1345_2015_32.
Vergos G S, Andritsanos V D, Grigoriadis V N, et al. 2015. Evaluation of GOCE/GRACE GGMs over Attica and Thessaloniki, Greece, and W0 determination for height system unification.//Jin S., Barzaghi R. (eds) IGFS 2014. Cham:Springer.
Vergos G S, Erol B, Natsiopoulos D A, et al. 2018. Preliminary results of GOCE-based height system unification between Greece and Turkey over marine and land areas. Acta Geodaetica Et Geophysica, 53(1):61-79.
Xu X Y, Zhao Y Q, Reubelt T, et al. 2017. A GOCE only gravity model GOSG01S and the validation of GOCE related satellite gravity models. Geodesy and Geodynamics, 8(4):260-272.
Zhai Z H, Wei Z Q, Wu F M, et al. 2011. Computation of vertical deviation of Chinese Height Datum from geoid by using EGM2008 model. Journal of Geodesy and Geodynamics (in Chinese), 31(4):116-118.
Zheng W, Xu H Z, Zhong M, et al. 2008. Efficient and rapid estimation of the accuracy of GRACE global gravitational field using the semi-analytical method. Chinese Journal of Geophysics (in Chinese), 51(6):1704-1710. doi:10.3321/j.issn:0001-5733.2008.06.010.
Zheng W, Xu H Z, Zhong M, et al. 2011. Accurate and rapid determination of GOCE Earth's gravitational field using time-space domain method associated with Kaula regularization. Chinese Journal of Geophysics (in Chinese), 54(1):14-21, doi:10.3969/j.issn.0001-5733.2011.01.003.
Zheng W, Xu H Z, Zhong M, et al. 2014. Precise and rapid recovery of the Earth's gravity field from the next-generation GRACE Follow-On mission using the residual intersatellite range-rate method. Chinese Journal of Geophysics (in Chinese), 57(1):31-41.
Zou X C, Li J C. 2016. Study on the earth gravity modeling by GOCE in individual accelerometer mode. Chinese Journal Geophysics (in Chinese), 59(4):1260-1266.郭海荣, 焦文海, 杨元喜. 2004. 1985 国家高程基准与全球似大地水准面之间的系统差及其分布规律. 测绘学报, 33(2):100-104.
赫林, 李建成, 褚永海. 2017. 联合GRACE/GOCE重力场模型和GPS/水准数据确定我国85高程基准重力位. 测绘学报, 46(7):815-823.
赫林, 李建成, 褚永海. 2016. 1985国家高程基准与全球高程基准之间的垂直偏差. 测绘学报, 45(7):768-774.
焦文海, 魏子卿, 马欣等. 2002. 1985 国家高程基准相对于大地水准面的垂直偏差. 测绘学报, 31(3):196-200.
李建成, 褚永海, 徐新禹. 2017. 区域与全球高程基准差异的确. 测绘学报, 46(10):1262-1273.
梁伟,徐新禹,李建成等. 2018. 联合EGM2008 模型重力异常和GOCE观测数据构建超高阶地球重力场模型SGG-UGM-1. 测绘学报,47(4):425-434.
翟振和, 魏子卿, 吴富梅等. 2011. 利用EGM2008位模型计算中国高程基准与大地水准面间的垂直偏差. 大地测量与地球动力学, 31(4):116-118.
郑伟, 许厚泽, 钟敏等. 2008. 基于半解析法有效和快速估计GRACE全球重力场的精度. 地球物理学报, 51(6):1704-1710.
郑伟, 许厚泽, 钟敏等. 2011. 基于时空域混合法利用Kaula正则化精确和快速解算GOCE地球重力场. 地球物理学报, 54(1):14-21, doi:10.3969/j.issn.0001-5733.2011.01.003.
郑伟, 许厚泽, 钟敏等. 2014. 基于残余星间速度法精确和快速反演下一代GRACE Follow-On地球重力场. 地球物理学报, 57(1):31-41, doi:10.6038/cjg20140104.
中华人民共和国国家质量监督检疫总局, 中国国家标准化管理委员会. 2006. GB/T 12897-2006 国家一、二等水准测量规范. 北京:中国标准出版社.
邹贤才,李建成.单加速度计模式下的GOCE卫星重力场建模方法研究.地球物理学报,2016, 59(4):1260-1266, doi:10.6038/cjg20160408.