CHEN LiFan,
SUN ChengHu,
ZHANG DongBin et al
.2019.Bias correction and the dataset development of sea surface temperature over the Indian-Pacific Ocean from 1901 to 2016 Chinese Journal of Geophysics(in Chinese),62(6): 2001-2015,doi: 10.6038/cjg2019M0141
Bias correction and the dataset development of sea surface temperature over the Indian-Pacific Ocean from 1901 to 2016
CHEN LiFan1, SUN ChengHu1, ZHANG DongBin1, CAO LiJuan1, LI WeiJing2,3
1. National Meteorological Information Center, Beijing 100081, China;
2. National Climate Center, Beijing 100081, China;
3. Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology, Nanjing 210044, China
Bias correction of the systematic observation error is vital for the development of long-term gridded sea surface temperature (SST) dataset since 1900. In this study, based on the optimized SR02 bias correction method and the global hourly ocean surface observation dataset from National Meteorological Information Center, we have developed the monthly bias-corrected SSTA dataset over the Indian-Pacific Ocean from 1901 to 2016, with a spatial resolution of 2°×2°. The results show that the spatial-temporal distribution of the SST bias derived from our newly developed dataset is generally consistent with the history of SST observation techniques, and also indeed reflects the seasonal variation of SST systematic observation errors. As the threshold of the optimized method varies with the space sample sizes, the bias derived from it reflects more local characteristics, and changes more consistently with transformation of observation techniques as compared with the bias features of ERSST V4. Both the mean bias and root-mean-square error (RMSE) of the bias-corrected SSTA compared with ERSSTv5 are smaller than the original one, with varying of reduced mean bias from 37.7% to 87.9%, and decreasing RMSE around 0.06℃. In addition, the comparisons with international products (i.e., ERSST V5, HadSST3, HadISST1 and COBE2) demonstrate that our newly developed bias-corrected SSTA dataset shares high correlations over 0.97 with those, and comparable trend features. Except for the coastal region of the East Asia in the higher latitudes, the general differences between our newly developed bias-corrected SSTA dataset and the other international products are mainly between -0.2~0.2℃.
Ashok K, Guan Z Y, Yamagata T. 2003. Influence of the Indian Ocean Dipole on the Australian winter rainfall. Geophysical Research Letters, 30(15):1821, doi:10.1029/2003GL017926.
Baoleerqimuge, Ren G Y. 2013. Sea surface temperature observation methods and comparison of commonly used sea surface temperature datasets. Advances in Meteorological Science and Technology (in Chinese), 3(6):52-57, doi:10.3969/j.issn.2095-1973.2013.06.007.
Chen Y, Randerson J T, Morton D C, et al. 2011. Forecasting fire season severity in South America using sea surface temperature anomalies. Science, 334(6057):787-791, doi:10.1126/science.1209472.
Christy J R, Parker D E, Brown S J, et al. 2001. Differential trends in tropical sea surface and atmospheric temperatures since 1979. Geophysical Research Letters, 28(1):183-186, doi:10.1029/2000GL011167.
Folland C K, Parker D E. 1995. Correction of instrumental biases in historical sea surface temperature data. Quarterly Journal of the Royal Meteorological Society, 121(522):319-367, doi:10.1002/qj.49712152206.
Han M, Wei L. 2008. Study on data assimilation of ocean temperature based on the optimum interpolation method. Ocean Technology (in Chinese), 27(4):90-92.
Huang B Y, Banzon V F, Freeman E, et al. 2015. Extended reconstructed sea surface temperature version 4 (ERSST.v4). Part I:upgrades and intercomparisons. Journal of Climate, 28(3):911-930, doi:10.1175/JCLI-D-14-00006.1.
Huang B Y, Thorne P W, Banzon V F, et al. 2017. Extended reconstructed sea surface temperature, version 5 (ERSSTv5):upgrades, validations, and intercomparisons. Journal of Climate, 30(20):8179-8205, doi:10.1175/JCLI-D-16-0836.1.
Ishii M, Shouji A, Sugimoto S, et al. 2005. Objective analyses of sea-surface temperature and marine meteorological variables for the 20th century using ICOADS and the Kobe Collection. International Journal of Climatology, 25(7):865-879, doi:10.1002/joc.1169.
Jones P. 2016. The reliability of global and hemispheric surface temperature records. Advances in Atmospheric Sciences, 33(3):269-282, doi:10.1007/s00376-015-5194-4.
Karl T R, Arguez A, Huang B Y, et al. 2015. Possible artifacts of data biases in the recent global surface warming hiatus. Science, 348(6242):1469-1472, doi:10.1126/science.aaa5632.
Kawai Y, Wada A. 2007. Diurnal sea surface temperature variation and its impact on the atmosphere and ocean:a review. Journal of Oceanography, 63(5):721-744, doi:10.1007/s10872-007-0063-0.
Kennedy J J, Rayner N A, Smith R O, et al. 2011. Reassessing biases and other uncertainties in sea surface temperature observations measured in situ since 1850:2. Biases and homogenization. Journal of Geophysical Research:Atmospheres, 116:D14104, doi:10.1029/2010JD015220.
Kent E C, Taylor P K. 2006. Toward estimating climatic trends in SST. Part I:methods of measurement. Journal of Atmospheric and Oceanic Technology, 23(3):464-475, doi:10.1175/JTECH1843.1.
Kent E C, Kennedy J J, Berry D I, et al. 2010. Effects of instrumentation changes on sea surface temperature measured in situ. WIREs Climate Change, 1(5):718-728, doi:10.1002/wcc.55.
Kent E C, Rayner N A, Berry D I, et al. 2013. Global analysis of night marine air temperature and its uncertainty since 1880:The HadNMAT2 data set. Journal of Geophysical Research:Atmospheres, 118(3):1281-1298, doi:10.1002/jgrd.50152.
Kent E C, Kennedy J J, Smith T M, et al. 2017. A call for new approaches to quantifying biases in observations of sea surface temperature. Bulletin of the American Meteorological Society, 98(8):1601-1616, doi:10.1175/BAMS-D-15-00251.1.
Klein S A, Soden B J, Lau N C. 1999. Remote sea surface temperature variations during ENSO:evidence for a tropical atmospheric bridge. Journal of Climate, 12:917-932, doi:10.1175/1520-0442(1999)012〈0917:RSSTVD〉2.0.CO;2.
Paternoster R, Brame R, Mazerolle P, et al. 1998. Using the correct statistical test for the equality of regression coefficients. Criminology, 36(4):859-866, doi:10.1111/j.1745-9125.1998.tb01268.x.
Rayner N A, Parker D E, Horton E B, et al. 2003. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. Journal of Geophysical Research, 108(D14), doi:10.1029/2002JD002670.
Saha S, Nadiga S, Thiaw C, et al. 2006. The NCEP climate forecast system. Journal of Climate, 19:3483-3517, doi:10.1175/JCLI3812.1.
Smith T M, Reynolds R W. 2002. Bias corrections for historical sea surface temperatures based on marine air temperatures. Journal of Climate, 15(1):73-87, doi:10.1175/1520-0442(2002)015〈0073:BCFHSS〉2.0.CO;2.
Yasunaka S, Hanawa K. 2011. Intercomparison of historical sea surface temperature datasets. International Journal of Climatology, 31(7):1056-1073, doi:10.1002/joc.2104.
Zhang D B. 2017. The assessment report of global hourly ocean surface observation dataset (in Chinese). http://10.1.64.154/idata/web/data/index?dataCode=OCEN_GLB_FTM.
Zhu J S, Liu Y D. 2018. Statistical characteristics of ITCZ precipitation in the central-eastern Pacific and its correlation with El Niño. Chinese Journal of Geophysics (in Chinese), 61(1):80-90, doi:10.6038/cjg2018K0673.宝乐尔其木格, 任国玉. 2013. 海温观测方法及常用海温资料数据集比较. 气象科技进展, 3(6):52-57, doi:10.3969/j.issn.2095-1973.2013.06.007.
韩梅, 魏亮. 2008. 最优插值法在海温数据同化中的应用研究. 海洋技术, 27(4):90-92.
张冬斌. 2017. 全球海表观测定时值数据集评估报告. 国家气象信息中心技术报告. http://10.1.64.154/idata/web/data/index?dataCode=OCEN_GLB_FTM.
朱金双, 刘宇迪. 2018. 中东太平洋热带辐合带降水统计特征及其与厄尔尼诺的相关性. 地球物理学报, 61(1):80-90, doi:10.6038/cjg2018K0673.