LING ZiLong,
GAO JinYao,
ZHAO LiHong et al
.2019.The asymmetric crustal structures of basement ridges of the Gakkel Ridge Chinese Journal of Geophysics(in Chinese),62(5): 1755-1771,doi: 10.6038/cjg2019M0366
1. Shandong University of Science and Technology, Qingdao 266590, China; 2. Key Laboratory of Submarine Geosciences, State Oceanic Administration, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China; 3. Laboratory for Marine Mineral Resources, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; 4. Nanjing University, School of Geography and Ocean Science, Nanjing 210023, China
Abstract:The ultraslow-spreading Gakkel Ridge has six linear basement ridges (A-F) along the spreading direction. They show different degrees of asymmetric geophysical signatures and crustal structures. The spreading rates, residual mantle bouguer anomaly, crustal thickness, and non-isostatic topography of Gakkel Ridge were calculated based on topographic data, free-air gravity anomaly data, and aeromagnetic data. Based on the comparison of topography and crustal thickness on conjugated flanks, we divide basement ridges into symmetric and asymmetric types. In general, the asymmetric amplitude (the absolute value of the difference between conjugated flanks) of topography and crustal thickness of basement ridges in B zone, D zone, and F zone are relatively small, and the asymmetric amplitude of topography is~157 m,~125 m,~208 m, the asymmetric amplitude of crustal thickness is~1 km,~0.06 km,~0.3 km. However, the asymmetric amplitude of topography and crustal thickness of basement ridges in A zone, C zone and E zone are relatively large, and the asymmetric amplitude of topography is~510 m,~410 m,~673 m, the asymmetric amplitude of crustal thickness is~2 km,~2.5 km,~1.1 km. We therefore suggest that B, D, and F have a relatively symmetric crustal structures, while A, C and E have an asymmetric crustal structures. According to the asymmetry of non-isostatic topography on conjugated flanks and compensation state of asymmetric topography, the asymmetry of A zone may due to uneven distribution of magma on conjugated flanks. The asymmetry of C zone and E zone may be caused by concentrated tectonism on one flank of basement ridge. We speculate that changes in the strike of ridge may facilitated the concentration of tectonism on one flank of the Gakkel Ridge.
Blackman D K, Karner G D, Searle R C. 2008. Three-dimensional structure of oceanic core complexes:Effects on gravity signature and ridge flank morphology, Mid-Atlantic Ridge, 30°N. Geochemistry, Geophysics, Geosystems, 9(6):Q06007, doi:10.1029/2008GC001951. Blackman D K, Collins J A. 2010. Lower crustal variability and the crust/mantle transition at the Atlantis Massif oceanic core complex. Geophysical Research Letters, 37(24):L24303, doi:10.1029/2010GL045165. Brozena J M, Childers V A, Lawver L A, et al. 2003. New aerogeophysical study of the Eurasia Basin and Lomonosov Ridge:Implications for basin development. Geology, 31(9):825-828, doi:10.1130/G19528.1. Buck W R. 1988. Flexural rotation of normal faults. Tectonics, 7(5):959-973, doi:10.1029/TC007i005p00959. Canales J P. 2010. Small-scale structure of the Kane oceanic core complex, Mid-Atlantic Ridge 23°30'N, from waveform tomography of multichannel seismic data. Geophysical Research Letters, 37(21):L21305, doi:10.1029/2010GL044412. Cande S C, Kent D V. 1995. Revised calibration of the geomagnetic polarity timescale for the Late Cretaceous and Cenozoic. Journal of Geophysical Research:Solid Earth, 100(B4):6093-6095, doi:10.1029/94JB03098. Cann J R, Blackman D K, Smith D K, et al. 1997. Corrugated slip surfaces formed at ridge-transform intersections on the Mid-Atlantic Ridge. Nature, 385(6614):329-332, doi:10.1038/385329a0. Cannat M, Rommevaux-Jestin C, Sauter D, et al. 1999. Formation of the axial relief at the very slow spreading Southwest Indian Ridge (49° to 69°E). Journal of Geophysical Research:Solid Earth, 104(B10):22825-22843, doi:10.1029/1999JB900195. Cannat M, Rommevaux-Jestin C, Fujimoto H. 2003. Melt supply variations to a magma-poor ultra-slow spreading ridge (Southwest Indian Ridge 61° to 69°E). Geochemistry, Geophysics, Geosystems, 4(8):9104, doi:10.1029/2002GC000480. Cochran J R, Kurras G J, Edwards M H, et al. 2003. The Gakkel Ridge:Bathymetry, gravity anomalies, and crustal accretion at extremely slow spreading rates. Journal of Geophysical Research:Solid Earth, 108(B2):2116, doi:10.1029/2002JB001830. Cowie P A, Karner G D. 1990. Gravity effect of sediment compaction:Examples from the North Sea and the Rhine Graben. Earth and Planetary Science Letters, 99(1-2):141-153. Demets C, Gordon R G, Argus D F. 2010. Geologically current plate motions. Geophysical Journal International, 181(1):1-80, doi:10.1111/j.1365-246X.2009.04491.x. Escartín J, Smith D K, Cann J, et al. 2008. Central role of detachment faults in accretion of slow-spreading oceanic lithosphere. Nature, 455(7214):790-794, doi:10.1038/nature07333. Escartín J, Canales J P. 2011. Detachments in oceanic lithosphere:Deformation, magmatism, fluid flow, and ecosystems. Eos, Transactions American Geophysical Union, 92(4):31, doi:10.1029/2011EO040003. Garcés M, Gee J S. 2007. Paleomagnetic evidence of large footwall rotations associated with low-angle faults at the Mid-Atlantic Ridge. Geology, 35(3):279-282, doi:10.1130/G23165A.1. Georgen J E, Lin J, Dick H J B. 2001. Evidence from gravity anomalies for interactions of the Marion and Bouvet hotspots with the Southwest Indian Ridge:Effects of transform offsets. Earth and Planetary Science Letters, 187(3-4):283-300, doi:10.1016/S0012-821X(01)00293-X. Glebovsky V Y, Kaminsky V D, Minakov A N, et al. 2006. Formation of the Eurasia Basin in the Arctic Ocean as inferred from geohistorical analysis of the anomalous magnetic field. Geotectonics, 40(4):263-281, doi:10.1134/S0016852106040029. Jokat W, Ritzmann O, Schmidt-Aursch M C, et al. 2003. Geophysical evidence for reduced melt production on the Arctic ultraslow Gakkel mid-ocean ridge. Nature, 423(6943):962-965, doi:10.1038/nature01706. Jokat W, Micksch U. 2004. Sedimentary structure of the Nansen and Amundsen basins, Arctic Ocean. Geophysical Research Letters, 31(2):L02603, doi:10.1029/2003GL018352. Karasik A M. 1968. Magnetic anomalies of the Gakkel Ridge and origin of the Eurasia Subbasin of the Arctic Ocean.//Demenitskaya R M ed. Geophysical Exploration Methods in the Arctic. Leningrad:Nauchno-Issledovatel'skii Institut Geologii Arktiki, 5:8-19. Karasik A M. 1974. The Eurasia basin of the arctic ocean from the point of view of plate tectonics.//Problems in Geology of Polar Areas of the Earth. Leningrad:Nauchno-Issledovatel'skii Institut Geologii Arktiki, 23-31. Kenyon S, Forsberg R, Coakley B. 2008. New gravity field for the Arctic. Eos, Transactions American Geophysical Union, 89(32):289-290. Kuo B Y, Forsyth D W. 1988. Gravity anomalies of the ridge-transform system in the South Atlantic between 31 and 34.5° S:Upwelling centers and variations in crustal thickness. Marine Geophysical Researches, 10(3-4):205-232, doi:10.1007/BF00310065. Macleod C J, Escartin J, Banerji D, et al. 2002. Direct geological evidence for oceanic detachment faulting:The Mid-Atlantic Ridge, 15°45'N. Geology, 30(10):879-882, doi:10.1130/0091-7613(2002)0302.0.CO;2. Müller R D, Sdrolias M, Gaina C, et al. 2008. Age, spreading rates, and spreading asymmetry of the world's ocean crust. Geochemistry, Geophysics, Geosystems, 9(4):Q04006, doi:10.1029/2007GC001743. Macleod C J, Carlut J, Escartín J, et al. 2011. Quantitative constraint on footwall rotations at the 15°45'N oceanic core complex, Mid-Atlantic Ridge:Implications for oceanic detachment fault processes. Geochemistry, Geophysics, Geosystems, 12(5):Q0AG03, doi:10.1029/2011GC003503. Mendel V, Munschy M, Sauter D. 2005. MODMAG, a MATLAB program to model marine magnetic anomalies. Computers & Geosciences, 31(5):589-597, doi:10.1016/j.cageo.2004.11.007. Michael P J, Langmuir C H, Dick H J B, et al. 2003. Magmatic and amagmatic seafloor generation at the ultraslow-spreading Gakkel ridge, Arctic Ocean. Nature, 423(6943):956-961, doi:10.1038/nature01704. Montési L G J, Behn M D, Hebert L B, et al. 2011. Controls on melt migration and extraction at the ultraslow Southwest Indian Ridge 10°-16°E. Journal of Geophysical Research:Solid Earth, 116(B10):B10102, doi:10.1029/2011JB008259. Neumann G A, Forsyth D W. 1993. The paradox of the axial profile:Isostatic compensation along the axis of the Mid-Atlantic Ridge. Journal of Geophysical Research:Solid Earth, 98(B10):17891-17910, doi:10.1029/93JB01550. Nikishin A M, Gaina C, Petrov E I, et al. 2017. Eurasia basin and Gakkel ridge, arctic ocean:Crustal asymmetry, ultra-slow spreading and continental rifting revealed by new seismic data. Tectonophysics, 746:64-82, doi:10.1016/j.tecto.2017.09.006. Olive J A, Behn M D, Ito G, et al. 2015. Sensitivity of seafloor bathymetry to climate-driven fluctuations in mid-ocean ridge magma supply. Science, 350(6258):310-313, doi:10.1126/science.aad0715. Parker R L. 1973. The rapid calculation of potential anomalies. Geophysical Journal of the Royal Astronomical Society, 31(4):447-455, doi:10.1111/j.1365-246X.1973.tb06513.x. Schlindwein V, Schmid F. 2016. Mid-ocean-ridge seismicity reveals extreme types of ocean lithosphere. Nature, 535(7611):276-279, doi:10.1038/nature18277. Schmidt-Aursch M C, Jokat W. 2016.3D gravity modelling reveals off-axis crustal thickness variations along the western Gakkel Ridge (Arctic Ocean). Tectonophysics, 691:85-97, doi:10.1016/j.tecto.2016.03.021. Schouten H, Smith D K, Cann J R, et al. 2010. Tectonic versus magmatic extension in the presence of core complexes at slow-spreading ridges from a visualization of faulted seafloor topography. Geology, 38(7):615-618, doi:10.1130/G30803.1. Searle R C, Bralee A V. 2007. Asymmetric generation of oceanic crust at the ultra-slow spreading Southwest Indian ridge, 64°E. Geochemistry, Geophysics, Geosystems, 8(5):Q05015, doi:10.1029/2006GC001529. Severinghaus J P, Macdonald K C. 1988. High inside corners at ridge-transform intersections. Marine Geophysical Researches, 9(4):353-367, doi:10.1007/BF00315005. Standish J J, Dick H J B, Michael P J, et al. 2008. MORB generation beneath the ultraslow spreading Southwest Indian Ridge (9-25°E):Major element chemistry and the importance of process versus source. Geochemistry, Geophysics, Geosystems, 9(5):Q05004, doi:10.1029/2008GC001959. Tucholke B E, Lin J. 1994. A geological model for the structure of ridge segments in slow spreading ocean crust. Journal of Geophysical Research:Solid Earth, 99(B6):11937-11958, doi:10.1029/94JB00338. Tucholke B E, Behn M D, Buck W R, et al. 2008. Role of melt supply in oceanic detachment faulting and formation of megamullions. Geology, 36(6):455-458. Vogt P R, Taylor P T, Kovacs L C, et al. 1979. Detailed aeromagnetic investigation of the Arctic Basin. Journal of Geophysical Research:Solid Earth, 84(B3):1071-1089, doi:10.1029/JB084iB03p01071. Wang T T, Tucholke B E, Lin J. 2015. Spatial and temporal variations in crustal production at the Mid-Atlantic Ridge, 25°N-27°30'N and 0-27 Ma. Journal of Geophysical Research:Solid Earth, 120(4):2119-2142, doi:10.1002/2014JB011501. Zhang T, Gao J Y, Wang W, et al. 2018. Asymmetric spreading rates and crustal structures of the Mohns Ridge since 20 Ma. Chinese Journal of Geophysics (in Chinese), 61(8):3263-3277, doi:10.6038/cjg2018L0583. 张涛, 高金耀, 王威等. 2018.20Ma以来Mohns洋中脊的非对称扩张速率与地壳结构. 地球物理学报, 61(8):3263-3277, doi:10.6038/cjg2018L0583.