HUANGFU PengPeng,
LI ZhongHai,
FAN WeiMing
.2019.Modes and dynamics of multi-terrane deformation during continental collision Chinese Journal of Geophysics(in Chinese),62(4): 1230-1243,doi: 10.6038/cjg2019M0607
Modes and dynamics of multi-terrane deformation during continental collision
HUANGFU PengPeng1, LI ZhongHai1, FAN WeiMing1,2
1. Key Laboratory of Computational Geodynamics, College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; 2. Key Laboratory of Continental Collision and Plateau Uplift, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
Abstract:Almost all the collisional orogens are constructed of accreted terranes, which are commonly regarded as an essential component. Previous studies have extensively investigated physical processes of terrane accretion as well as the corresponding geological records, but terrane deformation behaviors and the detachment modes due to continuous continental convergence are still poorly understood. In this work, we built a series of 2D numerical models involving two terranes representing multi-terrane structure of the natural orogens, to explore the effects of rheological properties and geometric parameters of the terrane on itself deformation and dynamic evolution of the collision zone. Model results reveal that the deformation behaviors of the terranes are mainly controlled by the rheological strength and the geometric width of the terrane that neighbors on the subduction zone, whereas the width of the farther terrane won't affect much. More importantly, according to the model results, intra-terrane underthrusting only occurs under the condition of a wide subduction-zone-neighboring terrane, and it is the weak terrane that usually underthrusts the relatively strong terrane. This study not only indicates two contrasting terrane deformation modes that might be applied to western and central Tibet, but also provides significant implications for lithospheric evolution of the natural orogens that contain a number of accreted terranes.
Baxter A T, Aitchison J C, Zyabrev S V. 2009. Radiolarian age constraints on Mesotethyan ocean evolution, and their implications for development of the Bangong-Nujiang suture, Tibet. Journal of the Geological Society, 166(4):689-694. Beaumont C, Muoz J A, Hamilton J, et al. 2000. Factors controlling the Alpine evolution of the central Pyrenees inferred from a comparison of observations and geodynamical models. Journal of Geophysical Research:Solid Earth, 105(B4):8121-8145. Beaumont C, Jamieson R A, Nguyen M H, et al. 2004. Crustal channel flows:1. Numerical models with applications to the tectonics of the Himalayan-Tibetan orogen. Journal of Geophysical Research:Solid Earth, 109(B6):B06406, doi:10.1029/2003JB002809. Beaumont C, Jamieson R, Nguyen M. 2010. Models of large, hot orogens containing a collage of reworked and accreted terranes. Canadian Journal of Earth Sciences, 47(4):485-515. Bittner D, Schmeling H. 1995. Numerical modelling of melting processes and induced diapirism in the lower crust. Geophysical Journal International, 123(1):59-70. Chen L, Capitanio F A, Liu L, et al. 2017. Crustal rheology controls on the Tibetan plateau formation during India-Asia convergence. Nature Communications, 8:15992. Clauser C, Huenges E. 1995. Thermal conductivity of rocks and minerals.//Ahrens T J ed. Rock Physics & Phase Relations:A Handbook of Physical Constants, Volume 3. Washington D C:AGU Reference Shelf, 3:105-126. Coney P J, Jones D L, Monger J W H. 1980. Cordilleran suspect terranes. Nature, 288(5789):329-333. Culshaw N G, Beaumont C, Jamieson R A. 2006. The orogenic superstructure-infrastructure concept:Revisited, quantified, and revived. Geology, 34(9):733-736. Dewey J F, Shackleton R M, Chengfa C, et al. 1988. The tectonic evolution of the Tibetan Plateau. Philosophical Transactions of the Royal Society A, Mathematical, Physical and Engineering Sciences, 327(1594):379-413. Ding L, Kapp P, Zhong D L, et al. 2003. Cenozoic volcanism in Tibet:Evidence for a transition from oceanic to continental subduction. Journal of Petrology, 44(10):1833-1865. Ding L, Kapp P, Yue Y H, et al. 2007. Postcollisional calc-alkaline lavas and xenoliths from the southern Qiangtang terrane, central Tibet. Earth and Planetary Science Letters, 254(1-2):28-38. Dong X, Zhang Z M, Xiang H, et al. 2013. Metamorphism and dynamics of the Lhasa terrane, South Tibet. Acta Geoscientia Sinica (in Chinese), 34(3):257-262. Ellis S, Beaumont C, Jamieson R A, et al. 1998. Continental collision including a weak zone:The vise model and its application to the Newfoundland Appalachians. Canadian Journal of Earth Sciences, 35(11):1323-1346. Gehrels G, Kapp P, DeCelles P, et al. 2011. Detrital zircon geochronology of pre-Tertiary strata in the Tibetan-Himalayan orogen. Tectonics, 30(5):TC5016, doi:10.1029/2011TC002868. Gerya T V, Yuen D A. 2003. Rayleigh-Taylor instabilities from hydration and melting propel ‘cold plumes’ at subduction zones. Earth and Planetary Science Letters, 212(1-2):47-62. Green D H, Ringwood A E. 1967. An experimental investigation of the gabbro to eclogite transformation and its petrological applications. Geochimica et Cosmochimica Acta, 31(5):767-833. Hermann J. 2002. Experimental constraints on phase relations in subducted continental crust. Contributions to Mineralogy and Petrology, 143(2):219-235. Hou Z Q, Mo X X, Gao Y F, et al. 2006. Early processes and tectonic model for the Indian-Asian continental collision:Evidence from the Cenozoic Gangdese igneous rocks in Tibet. Acta Geologica Sinica (in Chinese), 80(9):1233-1248. Huangfu P P, Wang Y J, Fan W M, et al. 2017. Dynamics of unstable continental subduction:Insights from numerical modeling. Science China Earth Sciences, 60(2):218-234. Huangfu P P, Li Z H, Gerya T, et al. 2018. Multi-terrane structure controls the contrasting lithospheric evolution beneath the western and central-eastern Tibetan plateau. Nature Communications, 9(1):3780. Irwin W P. 1972. Terranes of the western Paleozoic and Triassic belt in the southern Klamath Mountains, California. US Geological Survey Professional Papers, 800-C:C103-C111. Jamieson R A, Beaumont C, Medvedev S, et al. 2004. Crustal channel flows:2. Numerical models with implications for metamorphism in the Himalayan-Tibetan orogen. Journal of Geophysical Research:Solid Earth, 109(B6):B06407, doi:10.1029/2003JB002811. Jamieson R A, Beaumont C, Nguyen M H, et al. 2007. Synconvergent ductile flow in variable-strength continental crust:Numerical models with application to the western Grenville orogen. Tectonics, 26(5):TC5005, doi:10.1029/2006TC002036. Ji S C, Zhao P L. 1993. Flow laws of multiphase rocks calculated from experimental-data on the constituent phases. Earth and Planetary Science Letters, 117(1-2):181-187. Kelly S, Butler J P, Beaumont C. 2016. Continental collision with a sandwiched accreted terrane:Insights into Himalayan-Tibetan lithospheric mantle tectonics? Earth and Planetary Science Letters, 455:176-195. Kirby S H, Kronenberg A K. 1987. Rheology of the lithosphere:Selected topics. Reviews of Geophysics, 25(6):1219-1244. Li C, Van Der Hilst R D, Meltzer A S, et al. 2008. Subduction of the Indian lithosphere beneath the Tibetan Plateau and Burma. Earth and Planetary Science Letters, 274(1-2):157-168. Li Y L, Wang C S, Dai J G, et al. 2015. Propagation of the deformation and growth of the Tibetan-Himalayan orogen:A review. Earth-Science Reviews, 143:36-61. Li Z H, Liu M, Gerya T. 2016. Lithosphere delamination in continental collisional orogens:A systematic numerical study. Journal of Geophysical Research:Solid Earth, 121(7):5186-5211. Metcalfe I. 1996. Gondwanaland dispersion, Asian accretion and evolution of eastern Tethys. Australian Journal of Earth Sciences, 43(6):605-623. Mo X X, Pan G T. 2006. From the Tethys to the formation of the Qinghai-Tibet Plateau:Constrained by tectono-magmatic events. Earth Science Frontiers (in Chinese), 13(6):43-51. Monger J W H, Souther J G, Gabrielse H. 1972. Evolution of the Canadian Cordillera; a plate-tectonic model. American Journal of Science, 272(7):577-602. Ranalli G, Murphy D C. 1987. Rheological stratification of the lithosphere. Tectonophysics, 132(4):281-295. Ranalli G. 1995. Rheology of the Earth. London:Chapman and Hall. Saleeby J B. 1983. Accretionary tectonics of the North American cordillera. Annual Review of Earth and Planetary Sciences, 11(1):45-73. Schmid S M, Fügenschuh B, Kissling E, et al. 2004. Tectonic map and overall architecture of the Alpine orogen. Eclogae Geologicae Helvetiae, 97(1):93-117. Song S G, Niu Y L, Zhang L F, et al. 2009. Time constraints on orogenesis from oceanic subtraction to continental subduction, collision, and exhumation:An example from North Qilian and North Qaidam HP-UHP belts. Acta Petrologica Sinica (in Chinese), 25(9):2067-2077. Song S G, Niu Y L, Su L, et al. 2014. Continental orogenesis from ocean subduction, continent collision/subduction, to orogen collapse, and orogen recycling:The example of the North Qaidam UHPM belt, NW China. Earth-Science Reviews, 129:59-84. Tapponnier P, Xu Z Q, Roger F, et al. 2001. Oblique stepwise rise and growth of the Tibet Plateau. Science, 294(5547):1671-1677. Teng J W, Zhang Z J, Yang D H, et al. 1996. The study of geophysical criterion for dividing terranes in Qinghai-Xizang Plateau. Chinese Journal of Geophysics (in Chinese), 39(5):629-641. Tetreault J L, Buiter S J H. 2014. Future accreted terranes:A compilation of island arcs, oceanic plateaus, submarine ridges, seamounts, and continental fragments. Solid Earth, 5(2):1243-1275. Turcotte D L, Schubert G. 2002. Geodynamics. New York:Cambridge University Press. Van Staal C, Dewey J, Mac Niocaill C, et al. 1998. The Cambrian-Silurian tectonic evolution of the northern Appalachians and British Caledonides:History of a complex, west and southwest Pacific-type segment of iapetus. Geological Society, London, Special Publications, 143(1):197-242. Wang J Z. 2013. Composition and analysis of the tectonic deformation of mélange belt in Zhongba area, Tibet[Master's thesis] (in Chinese). Beijing:China University of Geosciences. Whitmeyer S J, Karlstrom K E. 2007. Tectonic model for the Proterozoic growth of North America. Geosphere, 3(4):220-259. Williams H, Hatcher R D Jr. 1982. Suspect terranes and accretionary history of the Appalachian orogen. Geology, 10(10):530-536. Wu C, Yin A, Zuza A V, et al. 2016. Pre-Cenozoic geologic history of the central and northern Tibetan Plateau and the role of Wilson cycles in constructing the Tethyan orogenic system. Lithosphere, 8(3):254-292. Wu F Y, Huang B C, Ye K, et al. 2008. Collapsed Himalayan-Tibetan orogen and the rising Tibetan Plateau. Acta Petrologica Sinica (in Chinese), 24(1):1-30. Xu Z Q, Yang J S, Li H B, et al. 2006. The Qinghai-Tibet plateau and continental dynamics:A review on terrain tectonics, collisional orogenesis, and processes and mechanisms for the rise of the plateau. Geology in China (in Chinese), 33(2):221-238. Yang W C, Song H B, Yang W Y. 2008. Crustal structure and evolution of the Sichuan-Gansu-Qinghai flysch basin. Acta Geologica Sinica (in Chinese), 82(9):1169-1177. Ye Z, Gao R, Li Q S, et al. 2015. Seismic evidence for the North China plate underthrusting beneath northeastern Tibet and its implications for plateau growth. Earth and Planetary Science Letters, 426:109-117. Yin A, Harrison T M. 2000. Geologic evolution of the Himalayan-Tibetan orogen. Annual Review of Earth and Planetary Sciences, 28(1):211-280. Yin A, Manning C E, Lovera O, et al. 2007. Early paleozoic tectonic and thermomechanical evolution of ultrahigh-pressure (UHP) metamorphic rocks in the northern Tibetan plateau, northwest China. International Geology Review, 49(8):681-716. Zeng R S, Ding Z F, Wu Q J, et al. 2000. Seismological evidences for the multiple incomplete crustal subductions in Himalaya and southern Tibet. Chinese Journal of Geophysics (in Chinese), 43(6):780-797. Zhao J M, Yuan X H, Liu H B, et al. 2010. The boundary between the Indian and Asian tectonic plates below Tibet. Proceedings of the National Academy of Sciences of the United States of America, 107(25):11229-11233. Zhao W J, Nelson K D, Che J K, et al. 1996. Deep seismic reflection in Himalaya region reveals the complexity of the crust and upper mantle structure. Chinese Journal of Geophysics (Acta Geophysica Sinica) (in Chinese), 39(5):615-628. Zhu D C, Zhao Z D, Niu Y L, et al. 2013. The origin and pre-Cenozoic evolution of the Tibetan Plateau. Gondwana Research, 23(4):1429-1454. Zuza A V, Wu C, Reith R C, et al. 2017. Tectonic evolution of the Qilian Shan:An early Paleozoic orogen reactivated in the Cenozoic. GSA Bulletin, 130(5-6):881-925. 董昕, 张泽明, 向华等. 2013. 青藏高原南部拉萨地体的变质作用与动力学. 地球学报, 34(3):257-262. 侯增谦, 莫宣学, 高永丰等. 2006. 印度大陆与亚洲大陆早期碰撞过程与动力学模型——来自西藏冈底斯新生代火成岩证据. 地质学报, 80(9):1233-1248. 皇甫鹏鹏, 王岳军, 范蔚茗等. 2017. 大陆不稳定俯冲的动力学研究. 中国科学:地球科学, 47(2):135-153. 莫宣学, 潘桂棠. 2006. 从特提斯到青藏高原形成:构造-岩浆事件的约束. 地学前缘, 13(6):43-51. 宋述光, 牛耀龄, 张立飞等. 2009. 大陆造山运动:从大洋俯冲到大陆俯冲、碰撞、折返的时限——以北祁连山、柴北缘为例. 岩石学报, 25(9):2067-2077. 滕吉文, 张中杰, 杨顶辉等. 1996. 青藏高原地体划分的地球物理标志研究. 地球物理学报, 39(5):629-641. 王劲铸. 2013. 西藏仲巴地区混杂岩带的组成与构造变形分析[硕士论文]. 北京:中国地质大学. 吴福元, 黄宝春, 叶凯等. 2008. 青藏高原造山带的垮塌与高原隆升. 岩石学报, 24(1):1-30. 许志琴, 杨经绥, 李海兵等. 2006. 青藏高原与大陆动力学——地体拼合、碰撞造山及高原隆升的深部驱动力. 中国地质, 33(2):221-238. 杨文采, 宋海斌, 杨午阳. 2008. 川甘青复理石盆地地壳结构与演化. 地质学报, 82(9):1169-1177. 曾融生, 丁志峰, 吴庆举等. 2000. 喜马拉雅及南藏的地壳俯冲带——地震学证据. 地球物理学报, 43(6):780-797. 赵文津, Nelson K D, 车敬凯等. 1996. 深反射地震揭示喜马拉雅地区地壳上地幔的复杂结构. 地球物理学报, 39(5):615-628.