WANG ZhiWei,
DING LiuGuan,
ZHOU KunLun et al
.2018.On the relationship between large SEP event and twin-CME with the observations from multiple-vantage spacecraft Chinese Journal of Geophysics(in Chinese),61(9): 3515-3525,doi: 10.6038/cjg2018L0709
On the relationship between large SEP event and twin-CME with the observations from multiple-vantage spacecraft
WANG ZhiWei1, DING LiuGuan1,2, ZHOU KunLun1, LE GuiMing3
1. Institute of Space Weather, Nanjing University of Information Science and Technology, Nanjing 210044, China; 2. School of Physics and Optoelectronic Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China; 3. Key Laboratory of Space Weather, National Center for Space Weather, China Meteorological Administration, Beijing 100081, China
Abstract:In this paper, we investigated 169 fast and wide coronal mass ejection (CME) and their associated solar energetic particle (SEP) events detected by SOHO and STEREO-A/B spacecraft from three-vantage viewpoints from 2007 to 2014. The flux threshold of defining a large SEP event was suggested to be 0.01 and 0.014 (cm2s·sr·MeV)-1 respectively for SOHO/EPHIN at 25~53 MeV and STEREO/HET at 23.8~60 MeV. The multiple-vantage observations can well rule out some misidentifications of twin-CME events due to the projection effect of CME detection. The results show that the percentage of misidentified twin-CMEs by only one spacecraft SOHO is generally lower than 10%, and not more than 15% ultimately. The time interval threshold of identifying a preceding CME ahead a main CME should be larger than about 9 hours and less than 13 hours from the analysis by three-vantage spacecraft. The correlation between SEP intensity and the speed, kinetic energy of CME is significantly higher for single-CME events than that for twin-CME events. From three-vantage observations, the statistical results is generally consistent with those results only from single-one view. Because one CME usually has more than one preceding CMEs, it seems to be shown that there is no obvious effects on the results from single-view observations in statistical analysis despite of the misidentification of few preceding CMEs.
Boerner P, Edwards C, Lemen J, et al. 2012. Initial calibration of the Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Solar Physics, 275(1-2):41-66. Brueckner G E, Howard R A, Koomen M J et al. 1995. The Large Angle Spectroscopic Coronagraph (LASCO)-Visible light coronal imaging and spectroscopy. Solar Physics, 162(1-2):357-402, doi:10.1007/BF00733434. Dong L H, Ding L G, Chen X L, et al. 2014. The compound "twin-CME" eruptions associated with extreme SEP event on Jnauary 23, 2012. Journal of Guangxi Normal University (Natural Science Edition), 32(3):12-21, doi:10.16088/j.issn.1001-6600.2014.03.027. Ding L G, Jiang Y, Zhao L L, et al. 2013. The "Twin-CME" scenario and large solar energetic particle events in solar cycle 23. The Astrophysical Journal, 763(1):30, doi:10.1088/0004-637X/763/1/30. Ding L G, Li G, Dong L H, et al. 2014a. On the identification of time interval threshold in the twin-CME scenario. Journal of Geophysical Research:Space Physics, 119(3):1463-1475. Ding L G, Li G, Jiang Y, et al. 2014b. Interaction between two coronal mass ejections in the 2013 May 22 large solar energetic particle event. The Astrophysical Journal, 793(2):L35, doi:10.1088/2041-8205/793/2/L35. Gopalswamy N, Yashiro S, Krucker S, et al. 2004. Intensity variation of large solar energetic particle events associated with coronal mass ejections. Journal of Geophysical Research:Space Physics, 109(A12):A12105, doi:10.1029/2004JA010602. Howard R A, Moses J D, Vourlidas A, et al. 2008. Sun earth connection coronal and heliospheric investigation (SECCHI). Space Science Reviews, 136(1-4):67-115, doi:10.1007/s11214-008-9341-4. Kahler S W. 1996. Coronal mass ejections and solar energetic particle events. High energy solar physics. AIP Conference Proceedings, 374:61-77. Kahler S W, Reames D V, Burkepile J T. 2000. A role for ambient energetic particle intensities in shock acceleration of solar energetic particles. High Energy Solar Physics Workshop-Anticipating HESSI, ASP Conference Series, Vol. 206. Edited by R. Ramaty and N. Mandzhavidze. ISBN:1-58381-033-1 (2000), p.468. Le G M, Yang X X, Ding L G, et al. 2014. Solar cycle distribution of strong solar proton events and the related solar-terrestrial phenomena. Astrophysics and Space Science, 352(2):403-408. Li G, Zank G P, Rice W K M. 2003. Energetic particle acceleration and transport at coronal mass ejection-driven shocks. Journal of Geophysical Research:Space Physics, 108(A2):1082, doi:10.1029/2002JA009666. Li G, Zank G P, Rice W K M. 2005. Acceleration and transport of heavy ions at coronal mass ejection-driven shocks. Journal of Geophysical Research:Space Physics, 110(A6):A06104, doi:10.1029/2004JA010600. Li G, Moore R, Mewaldt R A, et al. 2012. A twin-CME scenario for ground level enhancement events. Space Science Reviews, 171(1-4):141-160, doi:10.1007/s11214-011-9823-7. Müller-Mellin R, Kunow H, Fleissner V, et al. 1995. COSTEP-comprehensive suprathermal and energetic particle analyser. Solar Physics, 162(1-2):483-504. Mason G M, Mazur J E, Dwyer J R. 1999. 3He enhancements in large solar energetic particle events. The Astrophysical Journal Letters, 525(2):L133-L136, doi:10.1086/312349. Reames D V. 1995. Solar energetic particles:A paradigm shift. Reviews of Geophysics, 33(S1):585-589, doi:10.1029/95RG00188. Reames D V. 1999. Particle acceleration at the sun and in the heliosphere. Space Science Reviews, 90(3-4):413-491, doi:10.1023/A:1005105831781. Richardson I G, von Rosenvinge T T, Cane H V, et al. 2014. >25 MeV proton events observed by the high energy telescopes on the stereo a and b spacecraft and/or at earth during the first-seven years of the STEREO mission. Solar Physics, 289(8):3059-3107, doi:10.1007/s11207-014-0524-8. Shen C, Li G, Kong X, et al. 2013a. Compound twin coronal mass ejections in the 2012 May 17 gle event. The Astrophysical Journal, 763(2):114, doi:10.1088/0004-637X/763/2/114. Shen C L, Wang Y M, Pan Z H, et al. 2013b. Full halo coronal mass ejections:Do we need to correct the projection effect in terms of velocity?. Journal of Geophysical Research:Space Physics, 118(11):6858-6865, doi:10.1002/2013JA018872. Temmer M, Preiss S, Veronig A M. 2009. CME projection effects studied with STEREO/COR and SOHO/LASCO. Solar Physics, 256(1-2):183-199, doi:10.1007/s11207-009-9336-7. Von Rosenvinge T T, Reames D V, Baker R, et al. 2008. The high energy telescope for STEREO. Space Science Reviews, 136(1-4), 391-435, doi:10.1007/s11214-007-9300-5. Wang Y M, Colaninno R. 2014. Is solar cycle 24 producing more coronal mass ejections than cycle 23?. The Astrophysical Journal Letters, 784(2):L27. 董丽花, 丁留贯, 陈小兰等. 2014. 2012年1月23日SEP事件的"twin-CME"爆发现象. 广西师范大学学报:自然科学版, 32(3):12-21, doi:10.16088/j.issn.1001-6600.2014.03.027.