HUANG YiFan,
YUE ZuRun,
HU XiangYun
.2018.Characteristics of AMT response of anisotropic natural gas hydrate reservoirs in permafrost regions Chinese Journal of Geophysics(in Chinese),61(6): 2629-2640,doi: 10.6038/cjg2018L0054
Characteristics of AMT response of anisotropic natural gas hydrate reservoirs in permafrost regions
HUANG YiFan1,2, YUE ZuRun1, HU XiangYun2
1. School of Civil Engineering, Shijiazhuang Tiedao University, Shijiazhuang 050043, China; 2. Hubei Subsurface Multi-scale Imaging Key Laboratory, Institute of Geophysics and Geomatics, China University of Geosciences, Wuhan 430074, China
Abstract:Natural gas hydrates (NGH) are ice-like crystalline solids formed with water and gas (CH4 mostly) at low temperature and high pressure, which are usually present in ocean and seabed sediments or permafrost regions. NGH are a potential and clean energy resource with great amounts especially in ocean regions. Although the reserves of NGH in permafrost regions are smaller than ocean regions, their cover and trap of upper frozen soil layers, and shallow and certain storage depth, make NGH exploration in these regions easy with less threat of gas leakage. In permafrost regions, NGH usually developed in rock fractures, cracks and lamination interlayers. As the hydrate is an electricity insulator, the considerable resistivity differences between the hydrate and strata make the NGH reservoirs show obvious electrical anisotropy. This paper presents a typical simplified reservoir model, in which the resistive NGH layers are interbeded with conductive strata. Hence the electrical anisotropy exists and can be expressed by horizontal resistivity and vertical resistivity jointly. The audio-frequency magnetotelluric method (AMT) can be used to infer subsurface conductivity structure by measuring 2 horizontal components of the natural electric field and 2 horizontal and 1 vertical components of the natural magnetic field at earth's surface. With shallow penetration depth including hydrates layers' range, short measuring time and small cost, AMT is a useful tool for investigation of NGH reservoirs. In this paper, a 2D AMT forward modeling method considering triaxial anisotropy is applied to examine the response characteristics of anisotropic NGH reservoirs in permafrost regions. Two synthetic models are presented, one is an 1D layer model and the other is a 2D block model, and both overly a relatively high resistivity layer representing a resistive frozen layer. In the 1D model, responses in xy mode differ from yx mode, which prove the existence of anisotropy. In the 2D model, while the width and depth become larger or smaller, the apparent resistivity and phase responses change correspondingly. The responses are also sensitive to the hydrate saturation and the block distribution in both models, showing significant differences between the original one and that without the frozen layer above. The overlying resistive layer becomes an electromagnetic disturbance to the underlying structure, and makes the electrical anomaly of the anisotropic block less obvious. Nonetheless, the main structure characteristics and the response of the block anomaly remain similar in spite of the existence of the overlying frozen layer. The results show the anisotropy phenomenon can change apparent resistivity and phase responses behavior with different model parameters. It is proved that AMT is an effective method to prospect NGH reservoirs in permafrost regions and the study about electrical anisotropy can provide some new insights into the NGH exploration both in land and marine areas.
Archie G E. 1942. The electrical resistivity log as an aid in determining some reservoir characteristics. Transactions of the AIME, 146:54-63. Buffett B, Archer D. 2004. Global inventory of methane clathrate:sensitivity to changes in the deep ocean. Earth and Planetary Science Letters, 227(3-4):185-199, doi:10.1016/j.epsl.2004.09.005. Cai J C, Wei W, Hu X Y, et al. 2017. Electrical conductivity models in saturated porous media:A review. Earth-Science Reviews, 171:419-433, doi:10.1016/j.earscirev.2017.06.013. Chen D F, Wang M C, Xia B. 2005. Formation and distribution prediction of gas hydrate in Qinghai-Tibet Plateau permafrost. Chinese Journal of Geophysics (in Chinese), 48(1):165-172. Collett T S. 2005. Results at Mallik highlight progress in gas hydrate energy resource research and development. Petrophysics, 46(3):237-243. Cook A E, Goldberg D. 2008. Extent of gas hydrate filled fracture planes:implications for in situ methanogenesis and resource potential. Geophysical Research Letters, 35(15):L15302, doi:10.1029/2008GL034587. Cook A E, Anderson B I, Malinverno A, et al. 2010. Electrical anisotropy due to gas hydrate-filled fractures. Geophysics, 75(6):F173-F185, doi:10.1190/1.3506530. Craven J A, Roberts B J, Bellefleur G, et al. 2009. Recent Magnetotelluric Measurements at the Mallik Gas Hydrate Production Research Well Site, Northwest Territories. Geological Survey of Canada. Du Frane W L, Stern L A, Constable S, et al. 2015. Electrical properties of methane hydrate+sediment mixtures. Journal of Geophysical Research, 120(7):4773-4783, doi:10.1002/2015JB011940. Huang Y F, Hu X Y, Han B. 2016. Forward and inverse modeling of the magnetotelluric field in 2D anisotropic media with an adaptive finite element method. Oil Geophysical Prospecting (in Chinese), 51(4):809-920, doi:10.13810/j.cnki.issn.1000-7210.2016.04.024. Jin C S, Qiao D W, Lu Z Q, et al. 2011. Study on the characteristics of gas hydrate stability zone in the Muli permafrost, Qinghai-comparison between the modeling and drilling results. Chinese Journal of Geophysics (in Chinese), 54(1):173-181, doi:10.3969/j.issn.0001-5733.2011.01.018. Key K, Weiss C. 2006. Adaptive finite-element modeling using unstructured grids:the 2D magnetotelluric example. Geophysics, 71(6):G291-G299, doi:10.1190/1.2348091. Li J M. 2005. Geoelectric Field and Electrical Exploration (in Chinese). Beijing:Geological Publishing House. Liu Y, Wu X P. 2016. Parallel Monte Carlo method for advanced detection in tunnel incorporating anisotropic resistivity effect. Chinese Journal of Geophysics (in Chinese), 59(11):4297-4309, doi:10.6038/cjg20161130. Milkov A V. 2004. Global estimates of hydrate-bound gas in marine sediments:how much is really out there?. Earth-Science Reviews, 66(3-4):183-197, doi:10.1016/j.earscirev.2003.11.002. Shen J S, Su B Y, Guo N C. 2009. Study on the anisotropic characteristics of the electric response to fractured reservoir. Chinese Journal of Geophysics (in Chinese), 52(11):2903-2912, doi:10.3969/j.issn.0001-5733.2009.11.026. Sloan E D. 1998. Clathrate Hydrates of Natural Gases. 2nd Edition. New York:CRC Press. Spangenberg E. 2001. Modeling of the influence of gas hydrate content on the electrical properties of porous sediments. Journal of Geophysical Research, 106(B4):6535-6538, doi:10.1029/2000JB900434. Tang J T, Ren Z Y, Zhou C, et al. 2015. Frequency-domain electromagnetic methods for exploration of the shallow subsurface:a review.Chinese Journal of Geophysics (in Chinese), 58(8):2681-2705, doi:10.6038/cjg20150807. Wang J L, Wang X J, Qian J, et al. 2013. Anisotropic analysis and saturation estimation of gas hydrate filled in fractures:a case of site NGHP01-10D, offshore eastern India. Chinese Journal of Geophysics (in Chinese), 56(4):1312-1320, doi:10.6038/cjg20130425. Wannamaker P E. 2005. Anisotropy versus heterogeneity in continental solid earth electromagnetic studies:Fundamental response characteristics and implications for physicochemical state. Surveys in Geophysics, 26(6):733-765, doi:10.1007/s10712-005-1832-1. Xiao K, Zou C C, Yu C Q, et al. 2015. Numerical simulation of response characteristics of audio-magnetotelluric for gas hydrate in the Qilian Mountain Permafrost, China. Acta Geophysica, 63(5):1368-1404, doi:10.1515/acgeo-2015-0047. Yin C C, Ben F, Liu Y H, et al. 2014. MCSEM 3D modeling for arbitrarily anisotropic media. Chinese Journal of Geophysics (in Chinese), 57(12):4110-4122, doi:10.6038/cjg20141222. Yin Y T, Unsworth M, Liddell M, et al. 2014. Electrical resistivity structure of the Great Slave Lake shear zone, northwest Canada:implications for tectonic history. Geophysical Journal International, 199:178-199, doi:10.1093/gji/ggu251. Zhu Y H, Zhang Y Q, Wen H J, et al. 2010. Gas hydrates in the Qilian Mountain permafrost and their basic characteristics. Acta Geoscientica Sinica (in Chinese), 31(1):7-16. 陈多福, 王茂春, 夏斌. 2005. 青藏高原冻土带天然气水合物的形成条件与分布预测. 地球物理学报, 48(1):165-172. 黄一凡, 胡祥云, 韩波. 2016. 自适应有限元法的大地电磁二维各向异性正反演. 石油地球物理勘探, 51(4):809-920, doi:10.13810/j.cnki.issn.1000-7210.2016.04.024. 金春爽, 乔德武, 卢振权等. 2011. 青海木里冻土区水合物稳定带的特征研究——模拟与钻探结果对比. 地球物理学报, 54(1):173-181, doi:10.3969/j.issn.0001-5733.2011.01.018. 李金铭. 2005. 地电场与电法勘探. 北京:地质出版社. 刘洋, 吴小平. 2016. 巷道超前探测的并行Monte Carlo方法及电阻率各向异性影响. 地球物理学报, 59(11):4297-4309, doi:10.6038/cjg20161130. 沈金松, 苏本玉, 郭乃川. 2009. 裂缝性储层的电各向异性响应特征研究. 地球物理学报, 52(11):2903-2912, doi:10.3969/j.issn.0001-5733.2009.11.026. 汤井田, 任政勇, 周聪等. 2015. 浅部频率域电磁勘探方法综述. 地球物理学报, 58(8):2681-2705, doi:10.6038/cjg20150807. 王吉亮, 王秀娟, 钱进等. 2013. 裂隙充填型天然气水合物的各向异性分析及饱和度估算——以印度东海岸NGHP01-10D井为例. 地球物理学报, 56(4):1312-1320, doi:10.6038/cjg20130425. 殷长春, 贲放, 刘云鹤等. 2014. 三维任意各向异性介质中海洋可控源电磁法正演研究. 地球物理学报, 57(12):4110-4122, doi:10.6038/cjg20141222. 祝有海, 张永勤, 文怀军等. 2010. 祁连山冻土区天然气水合物及其基本特征. 地球学报, 31(1):7-16.