LIANG ChunTao,
HUANG YanLing,
WANG ChaoLiang et al
.2018.Progress in the studies of the seismic gap between the 2008 Wenchuan and 2013 Lushan earthquakes.Chinese Journal Of Geophysics,61(5): 1996-2010,doi: 10.6038/cjg2018M0254
Progress in the studies of the seismic gap between the 2008 Wenchuan and 2013 Lushan earthquakes
LIANG ChunTao1,2, HUANG YanLing2, WANG ChaoLiang2, LIU ZhiQiang2, YANG YiHai3, WU Jin4, HE FuJun2
1. State Key Laboratory of Geohazard Prevention and Geoenvironment Protection(Chengdu University of Technology), Chengdu 610059, China;
2. Key Laboratory of Earth Exploration and Information Technology of Ministry of Education(Chengdu University of Technology), Chengdu 610059, China;
3. Shaanxi EarthquakeAdministration, Xi'an 710068, China;
4. Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
The purpose of this work is to investigate the deep structure beneath the seismic gap between the 2008 Wenchuan and 2013 Lushan earthquakes, discuss the geodynamic process of the movement of materials, and to assess the seismic potential in this region. We have conducted two phases of seismic observations with more than 100 temporary instruments deployed in the last three years. The preliminary results indicate that (1) the seismic gap serves as a transition zone separating two distinct stress regimes, and the fault-parallel stress difference is observed between the two sides of the gap. (2) The receiver function analysis shows that a long belt of Moho uplift extends from the gap to the Longriba fault, roughly aligning with the Barkam fault. The Poisson's ratio is relatively high along this belt. A partial melting at the lower crust along this belt may explain these observations. (3) Beneath the seismic gap, the velocity in the upper crust is relatively low and a thickened lower crust may indicate the existence of partial melting in the lower crust. These two observations may explain the absence of seismicity in the seismic gap. (4) Micro-seismicity was studied using a matched filter method. Given the complete magnitude of earthquakes being lowered from 1.4 to 0.2, the seismic gap is still void of events compared to the two sides of the gap; seismic locations are also obtained by traveltimes recorded by the densest array in the region deployed recently. The seismicity is still void of events, but a linear strip of seismicity was observed to the east of the seismic gap and it aligns roughly with the Dayi fault and/or other blind faults in the region. These faults could be the structure to yield big events in the future. (5) Based on the above observations, we propose a new model to account for the geodynamics of the seismic gap: the fault-parallel stress difference across the gap may imply that the gap is the point where the crust of the eastern Tibetan plateau is being torn apart, resulting in the upwelling of hot mantle materials to produce partial melting in the lower crust. This partial melting may heat up the upper crust beneath the gap and turn the faults in this segment into aseismic. The tearing apart fracture of the crust may extend all the way to the Barkam fault, but it less developed further away from the seismic gap in the Longmenshan fault system.
Bokelmann G H R, Beroza G C. 2000. Depth-dependent earthquake focal mechanism orientation: evidence for a weak zone in the lower crust. Journal of Geophysical Research: Solid Earth, 105(B9): 21683-21695.
Burchfiel B C, Chen Z L, Liu Y P, et al. 1995. Tectonics of the Longmen Shan and adjacent regions, central China. International Geology Review, 37(8): 661-735, doi: 10.1080/00206819509465424.
Chen Y T, Yang Z X, Zhang Y, et al. 2013. From 2008 Wenchuan earthquake to 2013 Lushan earthquake. Scientia Sinica Terrae (in Chinese), 43(6): 1064-1072.
Clark M K, Royden L H. 2000. Topographic ooze: building the eastern margin of Tibet by lower crustal flow. Geology, 28(8): 703-706.
Deng Q D, Zhang P Z, Ran Y K, et al. 2003. Basic characteristics of active tectonics of China. Science in China Series D: Earth Sciences, 46(4): 356-372.
Fang L H, Wu J P, Wang W L, et al. 2015. Aftershock observation and analysis of the 2013 MS7.0 Lushan earthquake. Seismological Research Letters, 86(4): 1135-1142, doi: 10.1785/0220140186.
Gan W J, Zhang P Z, Shen Z K, et al. 2007. Present-day crustal motion within the Tibetan Plateau inferred from GPS measurements. Journal of Geophysical Research: Solid Earth, 112(B8): B08416, doi: 10.1029/2005JB004120.
Gao Y, Wang Q, Zhao B, et al. 2014. A rupture blank zone in middle south part of Longmenshan Faults: Effect after Lushan MS7.0 earthquake of 20 April 2013 in Sichuan, China. Science China Earth Sciences, 57(9): 2036-2044.
Hardebeck J L, Michael A J. 2004. Stress orientations at intermediate angles to the San Andreas fault, California. Journal of Geophysical Research: Solid Earth, 109(B11): B11303, doi: 10.1029/2004JB003239.
He F J, Liang C T, Yang Y H, et al. 2017. The crust structure of the unruptured segment between Wenchuan and Lushan Earthquakes revealed by receiver functions. Chinese Journal of Geophysics (in Chinese), 60(6): 2130-2146, doi: 10.6038/cjg20170609.
Herrmann R B. 2013. Computer programs in seismology: an evolving tool for instruction and research. Seismological Research Letters, 84(6): 1081-1088, doi: 10.1785/0220110096.
Hu X P, Yu C Q, Tao K, et al. 2008. Focal mechanism solutions of Wenchuan earthquake and its strong aftershocks obtained from initial P wave polarity analysis. Chinese Journal of Geophysics (in Chinese), 51(6): 1711-1718.
Hu X P, Cui X F, Ning J Y, et al. 2012. Preliminary study on tectonic deformation models in the Longmenshan region based on focal mechanism solutions of the Wenchuan earthquake sequence. Chinese Journal of Geophysics (in Chinese), 55(8): 2561-2574, doi: 10.6038/j.issn.0001-5733.2012.08.008.
Huang R Q, Wang Z, Pei S P, et al. 2009. Crustal ductile flow and its contribution to tectonic stress in Southwest China. Tectonophysics, 473(3-4): 476-489.
Hubbard J, Shaw J H. 2009. Uplift of the Longmen Shan and Tibetan plateau, and the 2008 Wenchuan (M=7.9) earthquake. Nature, 458(7235): 194-197.
Hubbard J, Shaw J H, Klinger Y. 2010. Structural Setting of the 2008 MW7.9 Wenchuan, China, Earthquake. Bulletin of the Seismological Society of America, 100(5B): 2713-2735.
Lei J S, Zhang G W, Xie F R. 2014. The 20 April 2013 Lushan, Sichuan, mainshock, and its aftershock sequence: tectonic implications. Earthquake Science, 27(1): 15-25.
Liang C T, Song X D, Huang J L. 2004. Tomographic inversion of Pn travel times in China. Journal of Geophysical Research: Solid Earth, 109(B11): B11304, doi: 10.1029/2003JB002789.
Liang C T, Yu Y Y, Yang Y H, et al. 2016. Joint inversion of source location and focal mechanism of microseisms. Geophysics, 81(2): KS103-KS111, doi: 10.1190/GEO2015-0272.1.
Liu M, Luo G, Wang H. 2014. The 2013 Lushan earthquake in China tests hazard assessments. Seismological Research Letters, 85(1): 40-43.
Liu Q Y, Van Der Hilst R D, Li Y, et al. 2014. Eastward expansion of the Tibetan Plateau by crustal flow and strain partitioning across faults. Nature Geoscience, 7(5): 361-365.
Luo Y, Zhao L, Zeng X F, et al. 2015. Focal mechanisms of the Lushan earthquake sequence and spatial variation of the stress field. Science China Earth Sciences, 58(7): 1148-1158, doi: 10.1007/s11430-014-5017-y.
Pei S P, Zhang H J, Su J R, et al. 2014. Ductile gap between the Wenchuan and Lushan earthquakes revealed from the Two-dimensional Pg seismic tomography. Scientific Reports, 4: 6489, doi: 10.1038/srep06489.
Roger F, Jolivet M, Malavieille J. 2010. The tectonic evolution of the Songpan-Garzê (North Tibet) and adjacent areas from Proterozoic to present: a synthesis. Journal of Asian Earth Sciences, 39(4): 254-269, doi: 10.1016/j.jseaes.2010.03.008.
Royden L H. 1996. Coupling and decoupling of crust and mantle in convergent orogens: Implications for strain partitioning in the crust. Journal of Geophysical Research: Solid Earth, 101(B8): 17679-17705, doi: 10.1029/96JB00951.
Royden L H, Burchfiel B C, King R W, et al. 1997. Surface deformation and lower crustal flow in eastern Tibet. Science, 276(5313): 788-790, doi: 10.1126/science.276.5313.788.
Shi Y L, Zhu S B. 2003. Contrast of rheology in the crust and mantle near MOHO revealed by depth variation of earthquake mechanism in continental China. Chinese Journal of Geophysics (in Chinese), 46(3): 359-365.
Tapponnier P, Peltzer G, Le Dain A Y, et al. 1982. Propagating extrusion tectonics in Asia: new insights from simple experiments with plasticine. Geology, 10(12): 611-616.
Wang W M, Zhao L F, Li J, et al. 2008. Rupture process of the MS8.0 Wenchuan earthquake of Sichuan, China. Chinese Journal of Geophysics (in Chinese), 51(5): 1403-1410.
Wang W M, Zhao L F, Li J, et al. 2008. Rupture process of the MS8.0 Wenchuan earthquake of Sichuan, China. Chinese Journal of Geophysics (in Chinese), 51(5): 1403-1410.
Wang X S, Lu J, Xie Z J, et al. 2015. Focal mechanisms and tectonic stress field in the North-South Seismic Belt of China. Chinese Journal of Geophysics (in Chinese), 58(11): 4149-4162, doi: 10.6038/cjg20151122.
Wang Z, Su J R, Liu C X, et al. 2015. New insights into the generation of the 2013 Lushan earthquake (MS7.0), China. Journal of Geophysical Research: Solid Earth, 120(5): 3507-3526, doi: 10.1002/2014JB011692.
Wu Z B, Xu T, Badal J, et al. 2017. Crustal shear-wave velocity structure of northeastern Tibet revealed by ambient seismic noise and receiver functions. Gondwana Research, 41: 400-410.
Xu Z Q, Ji S C, Li H B, et al. 2008. Uplift of the Longmen Shan range and the Wenchuan earthquake. Episodes, 31(3): 291-301.
Yan Z K, Li Y, Zhao G H, et al. 2014. The relationship between Lushan earthquake and Wenchuan earthquake by segmentation of geology and geomorphology of Longmen Shan. Chinese Journal of Nature (in Chinese), 36(1): 51-58, doi: 10.3939/j.issn.0253-9608.2014.01.007.
Yang Y H, Liang C T, Su J R. 2015. Focal mechanism inversion based on regional model inverted from receiver function and its application to the Lushan earthquake sequence. Chinese Journal of Geophysics (in Chinese), 58(10): 3583-3600, doi: 10.6038/cjg20151013.
Yang Y H, Liang C T, Li Z Q, et al. 2017. Stress distribution near the seismic gap between Wenchuan and Lushan earthquakes. Pure and Applied Geophysics, 174(6): 2257-2267, doi: 10.1007/s00024-016-1360-6.
Yi G X, Long F, Zhang Z W. 2012. Spatial and temporal variation of focal mechanisms for aftershocks of the 2008 MS8.0 Wenchuan earthquake. Chinese Journal of Geophysics (in Chinese), 55(4): 1213-1227, doi: 10.6038/j.issn.0001-5733.2012.04.017.
Yi G X, Wen X Z, Xin H, et al. 2013. Stress state and major-earthquake risk on the southern segment of the Longmen Shan fault zone. Chinese Journal of Geophysics (in Chinese), 56(4): 1112-1120, doi: 10.6038/cjg20130407.
Yi G X, Long F, Vallage A, et al. 2016. Focal mechanism and tectonic deformation in the seismogenic area of the 2013 Lushan earthquake sequence, southwestern China. Chinese Journal of Geophysics (in Chinese), 59(10): 3711-3731, doi: 10.6038/cjg20161017.
Yin A, Nie S Y. 1993. An indentation model for the North and South China collision and the development of the Tan-Lu and Honam fault systems, eastern Asia. Tectonics, 12(4): 801-813, doi: 10.1029/93TC00313.
Zhang H F, Zhang L, Harris N, et al. 2006. U-Pb zircon ages, geochemical and isotopic compositions of granitoids in Songpan-Garze fold belt, eastern Tibetan plateau: constraints on petrogenesis and tectonic evolution of the basement. Contributions to Mineralogy and Petrology, 152(1): 75-88, doi: 10.1007/s00410-006-0095-2.
Zhang M, Wen L X. 2015. An effective method for small event detection: match and locate (M&L). Geophysical Journal International, 200(3): 1523-1537.
Zhang P Z, Shen Z K, Wang M, et al. 2004. Continuous deformation of the Tibetan Plateau from global positioning system data. Geology, 32(9): 809-812.
Zhang X, Zhang J. 2016. Microseismic search engine for real-time estimation of source location and focal mechanism. Geophysics, 81(5): KS169-KS182.
Zhao L, Luo Y, Liu T Y, et al. 2013. Earthquake focal mechanisms in Yunnan and their inference on the regional stress field. Bulletin of the Seismological Society of America, 10(4): 2498-2507, doi: 10.1785/0120120309.
Zhu J S, Zhao J M, Jiang X T, et al. 2012. Crustal flow beneath the eastern margin of the Tibetan plateau. Earthquake Science, 25(5-6): 469-483.
Zhu L P. 2000. Crustal structure across the San Andreas Fault, southern California from teleseismic converted waves. Earth and Planetary Science Letters, 179(1): 183-190.
附中文参考文献
陈运泰, 杨智娴, 张勇等. 2013. 从汶川地震到芦山地震. 中国科学: 地球科学, 43(6): 1064-1072.
何富君, 梁春涛, 杨宜海等. 2017. 用接收函数方法研究汶川和芦山地震之间未破裂段的地壳结构. 地球物理学报, 60(6): 2130-2146, doi: 10.6038/cjg20170609.
胡幸平,俞春泉,陶开等.2008.利用P波初动资料求解汶川地震及其强余震震源机制解.地球物理学报,51(6):1711-1718.
胡幸平, 崔效锋, 宁杰远等. 2012. 基于汶川地震序列震源机制解对龙门山地区构造变形模式的初步探讨. 地球物理学报, 55(8): 2561-2574, doi: 10.6038/j.issn.0001-5733.2012.08.008.
石耀霖, 朱守彪. 2003. 中国大陆震源机制深度变化反映的地壳-地幔流变特征. 地球物理学报, 46(3): 359-365.
苏珊·霍夫. 2015. 测不可测, 大起大落的地震预测研究. 梁春涛译. 北京: 科学出版社.
王卫民, 赵连锋, 李娟等. 2008. 四川汶川8.0级地震震源过程. 地球物理学报, 51(5): 1403-1410.
王晓山, 吕坚, 谢祖军等. 2015. 南北地震带震源机制解与构造应力场特征. 地球物理学报, 58(11): 4149-4162, doi: 10.6038/cjg20151122.
易桂喜, 龙锋,Vallage A等. 2016. 2013年芦山地震序列震源机制与震源区构造变形特征分析. 地球物理学报, 59(10): 3711-3731, doi: 10.6038/cjg20161017.
颜照坤, 李勇, 赵国华等. 2014. 从龙门山地质地貌分段性探讨芦山地震与汶川地震的关系. 自然杂志, 36(1): 51-58, doi: 10.3939/j.issn.0253-9608.2014.01.007.
杨宜海, 梁春涛, 苏金蓉. 2015. 用接收函数建立区域模型的震源机制反演及其在芦山地震序列研究中的应用. 地球物理学报, 58(10): 3583-3600, doi: 10.6038/cjg20151013.
杨智娴, 陈运泰, 郑月军等. 2003. 双差地震定位法在我国中西部地区地震精确定位中的应用. 中国科学(D辑), 33(S1): 129-134.
易桂喜, 龙锋, 张致伟. 2012. 汶川MS8.0地震余震震源机制时空分布特征. 地球物理学报, 55(4): 1213-1227, doi: 10.6038/j.issn.0001-5733.2012.04.017.
易桂喜, 闻学泽, 辛华等. 2013. 龙门山断裂带南段应力状态与强震危险性研究. 地球物理学报, 2013, 56(4): 1112-1120, doi: 10.6038/cig20130407.
王椿镛, 楼海, 吕智勇等. 2008. 青藏高原东部地壳上地幔S波速度结构——下地壳流的深部环境. 中国科学D辑: 地球科学, 38(1):22-32.