LIANG JianHong,
SUN Li,
LIU Jie
.2018.A high precision relocation study of the MS7.0 Jiuzhaigou earthquake and the aftershocks occurred in 2017.Chinese Journal Of Geophysics,61(5): 2152-2162,doi: 10.6038/cjg2018L0604
2017年四川九寨沟MS7.0地震及余震精定位研究
梁建宏, 孙丽, 刘杰
中国地震台网中心, 北京 100045
A high precision relocation study of the MS7.0 Jiuzhaigou earthquake and the aftershocks occurred in 2017
LIANG JianHong, SUN Li, LIU Jie
China Earthquake Networks Center, Beijing 100045, China
Abstract:On August 8th, an MS7.0 strong earthquake occurred in Jiuzhaigou, Sichuan province. We utilized the high precision relocation method, hypoRelocate, which has good constraints on both absolute location and relative location, to relocate 854 aftershocks that are larger than ML1.5 and recorded before August 15th. In relocation, we used 6178 Pg travel times, 3363 Sg travel times, 16365 differential travel times and 74 SH coda cross-correlogram travel times of 34 events that are larger than ML3.5. The relocation result indicates that the aftershocks are distributed along northwest with a length of 35 km and width of 12 km. The mainshock separates the aftershocks into northwestern crowd and southeastern crowd and the northwestern crowd spreads more widely than the southeastern. The seismogenic fault is nearly vertical that is consistent with the focal mechanism of the mainshock. The mainshock is relocated at the depth of 16 km and most of the aftershocks are between 5 km and 15 km. From the depth profile along the fault, we found that the seismicity near the main shock area is less active and this area extends to the surface. The phenomenon can be explained by that the area is the large slip area of the mainshock and the strain and stress are released adequately. Besides, we also found that the northwestern event crowd is shallower than the southeastern and the events' depths have temporal change that both the two event crowds move shallower after 60 hours after the main shock. After comparison and analysis, we found that the utilization of temporary stations caused the spatial and temporal evolution and that does not affect the main features of the distribution of the aftershocks.
Chen C Y, Ren J W, Meng G J, et al. 2012. Analysis of modern activity of major faults in northeast margin of Baryan-Har block. Journal of Geodesy and Geodynamics (in Chinese), 32(3): 27-30. Das S, Scholz C H. 1981. Off-fault aftershock clusters caused by shear stress increase?. Bulletin of the Seismological Society of America, 71(5): 1669-1675. Fang L H, Wu J P, Wang W L, et al. 2013. Relocation of the mainshock and aftershock sequences of MS7.0 Sichuan Lushan earthquake. Chinese Science Bulletin, 58(28-29): 3451-3459. Felzer K R, Brodsky E E. 2006. Decay of aftershock density with distance indicates triggering by dynamic stress.Nature, 441(7094): 735-738. Hardebeck J L, Nazareth J J, Hauksson E. 1998. The static stress change triggering model: Constraints from two southern California aftershock sequences.Journal of Geophysical Research: Solid Earth, 103(B10): 24427-24437. Ji C, Archuleta R J, Twardzik C. 2015. Rupture history of 2014 MW6.0 South Napa earthquake inferred from near-fault strong motion data and its impact to the practice of ground strong motion prediction. Geophysical Research Letters, 42(7): 2149-2156. Jiang L W, Wang S T, Wang Y S, et al. 2005. Active tectonic system and its control of seismic activity in the east part of the northwest fault block of Sichuan, China. Journal of Chengdu University of Technology (Science & Technology Edition) (in Chinese), 32(4): 340-344. Liu F, Zhang J S, Huang X N, et al. 2009. A GIS research on the relationship between active faults and earthquake in China north-south belt and central orogenic system intersection zone (in Chinese). Earthquake Research in China, 25(4): 394-404. Liu Y, Zhang H J, Zhang X, et al. 2015. Anisotropic upper crust above the aftershock zone of the 2013 MS7.0 Lushan earthquake from the shear wave splitting analysis. Geochemistry, Geophysics, Geosystems, 16(10): 3679-3696. Mendoza C, Hartzell S H. 1988. Aftershock patterns and main shock faulting.Bulletin of the Seismological Society of America, 78(4): 1438-1449. Richards-Dinger K, Stein R S, Toda S. 2010. Decay of aftershock density with distance does not indicate triggering by dynamic stress.Nature, 467(7315): 583-586. Sykes L R. 1971. Aftershock zones of great earthquakes, seismicity gaps, and earthquake prediction for Alaska and the Aleutians. Journal of Geophysical Research, 76(32):8021-8041. Sun L, Zhang M, Wen L M. 2016. A new method for high-resolution event relocation and application to the aftershocks of Lushan Earthquake, China. Journal of Geophysical Research: Solid Earth, 121(4): 2539-2559. Wang C Y, Han W B, Wu J P, et al. 2007. Crustal structure beneath the eastern margin of the Tibetan Plateau and its tectonic implications.Journal of Geophysical Research: Solid Earth, 112(B7): B07307, doi: 10.1029/2005JB003873. Wang K, Shen Z K. 2011. Location and focal mechanism of the 1933 Diexi earthquake and its associated regional tectonics. Acta Seismologica Sinica, 33(5): 557-567. Wessel P, Smith W H F, Scharroo R, et al. 2013. Generic mapping tools: Improved version released.EOS, 94(45): 409-410. Yang Y H, Fan J, Hua Q, et al. 2017. Inversion for the focal mechanisms of the 2017 Jiuzhaigou M7.0 earthquake sequence using near-field full waveforms. Chinese Journal of Geophysics (in Chinese), 60(10): 4098-4104, doi: 10.6038/cjg20171034. Yano T E, Shao G F, Liu Q M, et al. 2014. Coseismic and potential early afterslip distribution of the 2009 MW6.3 L'Aquila, Italy earthquake. Geophysical Journal International, 199(1): 23-40. Yi G X, Wen X Z, Wang S W, et al. 2006. Study on fault sliding behaviors and strong earthquake risk of the Longmenshan-Minshan fault zones from current seismicity parameters (in Chinese). Earthquake Research in China, 22(2): 117-125. Yi G X, Long F, Liang M J, et al. 2017. Focal mechanism solutions and seismogenic structure of the 8 August 2017 M7.0 Jiuzhaigou earthquake and its aftershocks, northern Sichuan. Chinese Journal of Geophysics (in Chinese), 60(10): 4083-4097, doi: 10.6038/cjg20171033. Zhang J S, Huang X N, Niu X L, et al. 2010. Chuanzhusi-Huanglong strike-slip faults and a transpressional shear system in Songpan-Pingwu area, northwestern Sichuan, China. Earth Science Frontiers (in Chinese), 17(4): 15-32. Zhang J L, Ren J W, Fu J D, et al. 2012. Earthquake rupture features and tectonic significance of the Tazang fault in the eastern part of the East Kunlun Fault Zones.Earthquake (in Chinese), 32(1): 1-16. Zhang P Z, Deng Q D, Zhang G M, et al. 2003. Active tectonic blocks and strong earthquakes in the continent of China. Science in China Series D: Earth Sciences, 46(S2): 13-24. Zhang X, Feng W P, Xu L S, et al. 2017. The source-process inversion and the intensity estimation of the 2017 MS7.0 Jiuzhaigou earthquake. Chinese Journal of Geophysics (in Chinese), 60(10): 4105-4116, doi: 10.6038/cjg20171035. Zhou R J, Pu X H, He Y L, et al. 2000. Recent activity of Minjiang fault zone, uplift of Minshan block and their relationship with seismicity of Sichuan.Seismology and Geology (in Chinese), 22(3): 285-294. 附中文参考文献 陈长云, 任金卫, 孟国杰等. 2012. 巴颜喀拉块体北东缘主要断裂现今活动性分析. 大地测量与地球动力学, 32(3): 27-30. 房立华, 吴建平, 王未来等. 2013. 四川芦山MS7.0级地震及其余震序列重定位. 科学通报, 58(20): 1901-1909. 蒋良文, 王士天, 王运生等. 2005. 川西北断块东部区域活动构造体系及其对地震活动的控制作用. 成都理工大学学报(自然科学版), 32(4): 340-344. 刘峰,张家声,黄雄南等.2009.利用GIS方法研究南北地震带和中央造山带交汇活动断裂与地震的关系.中国地震,25(4):394-404. 王康,沈正康.2011.1933年叠溪地震的发震位置、震源机制与区域构造.地震学报,33(5):557-567. 杨宜海, 范军, 花茜等. 2017. 近震全波形反演2017年九寨沟M7.0地震序列震源机制解. 地球物理学报, 60(10): 4098-4114, doi: 10.6038/cjg20171034. 易桂喜,闻学泽,王思维等.2006.由地震活动参数分析龙门山—岷山断裂的现今活动习性与强震危险性.中国地震,22(2):117-125. 易桂喜, 龙锋, 梁明剑等. 2017. 2017年8月8日九寨沟M7.0地震及余震震源机制解与发震构造分析. 地球物理学报, 60(10): 4083-4097, doi: 10.6038/cjg20171033. 张家声, 黄雄南, 牛向龙等. 2010. 川主寺—黄龙左行走滑剪切断层和松潘—平武剪切转换构造体制. 地学前缘, 17(4): 15-32. 张军龙, 任金卫, 付俊东等. 2012. 东昆仑断裂带东部塔藏断裂地震地表破裂特征及其构造意义. 地震, 32(1): 1-16. 张培震, 邓起东, 张国民等. 2003. 中国大陆的强震活动与活动地块. 中国科学(D辑), 33(S1): 12-20. 张旭, 冯万鹏, 许力生等. 2017. 2017年九寨沟MS7.0级地震震源过程反演与烈度估计. 地球物理学报, 60(10): 4105-4116, doi: 10.6038/cjg20171035. 周荣军, 蒲晓虹, 何玉林等. 2000. 四川岷江断裂带北段的新活动、岷山断块的隆起及其与地震活动的关系. 地震地质, 22(3): 285-294.