YANG Yi,
CHANG LiJun
.2018.Variations of shear wave splitting in the source region of the 2017 Jiuzhaigou MS7.0 earthquake.Chinese Journal Of Geophysics,61(5): 2088-2098,doi: 10.6038/cjg2018M0174
2017年九寨沟MS7.0地震震源区横波分裂变化特征
杨溢, 常利军
中国地震局地球物理研究所, 北京 100081
Variations of shear wave splitting in the source region of the 2017 Jiuzhaigou MS7.0 earthquake
YANG Yi, CHANG LiJun
Institute of Geophysics, China Earthquake Administration, Beijing 100081, China
Abstract:This work studied the variation of shear wave splitting associated with the 2017 Jiuzhaigou MS7.0 earthquake sequence. By analyzing shear wave particle motion of local events in the shear wave window, the fast polarization directions and the delay times between fast and slow shear waves were derived from seismic recordings at seven stations in the source area of the Jiuzhaigou earthquake. In the study region, the fast polarization directions show partition characteristics. And the systematic changes of the delay times between two split shear waves were also observed. As for spatial distribution, there are three stations L5111, L5112 and L6202 in the aftershock area of the northern source area of the Jiuzhaigou earthquake, of which the former two located on the east side of the seismogenic fault of the Jiuzhaigou earthquake have only one predominant fast direction (NNE), while the latter one located on the west side of the seismogenic fault has two predominant fast directions (EW and NNE), implying a combining effect of the drastic change of crustal stress and complex fault structure in the aftershock area. With reference to the three stations JZG, L5110 and L5113 outside the aftershock area, the NW fast polarization direction of station JZG located in the eastern source area and near the Tazang fault (east) is consistent with the strike of the Tazang fault (east), while the EW fast polarization directions of stations L5110 and L5113 in the southern source area are consistent with the direction of regional principal compressive stress. The average delay times of the stations in the aftershock area are greater than those of the stations outside the aftershock area, indicating that the stress accumulation in the aftershock area is stronger than that of the surrounding area during the seismogenic process of the Jiuzhaigou earthquake. In the time domain, the dispersion of the fast directions was large in the initial period after the main shock; as time went on, the dispersion became smaller; the delay times was also large in the initial period after the main shock, and gradually decreased with time and stabilized after a period of time. The variations of shear wave splitting with time may demonstrate changes of the local stress field during the main shock and the aftershocks. With the stress release and adjustment caused by the main shock and aftershocks, the stress accumulated during the seismogenic process of the Jiuzhaigou earthquake gradually decreased, and the stress tended to stabilize in the late stage.
Boness N L, Zoback M D. 2006. Mapping stress and structurally controlled crustal shear velocity anisotropy in California. Geology, 34(10): 825-828, doi: 10.1130/G22309.1. Booth D C, Crampin S. 1985. Shear-wave polarizations on a curved wavefront at an isotropic free surface. Geophysical Journal International, 83(1): 31-45. Chang L J, Ding Z F, Wang C Y. 2010. Variations of shear wave splitting in the 2010 Yushu MS7.1 earthquake region. Chinese Journal of Geophysics (in Chinese), 53(11): 2613-2619, doi: 10.3969/j.issn.0001-5733.2010.11.009. Chang L J, Ding Z F, Wang C Y. 2014. Variations of shear wave splitting in the 2013 Lushan MS7.0 earthquake region. Science China Earth Sciences, 57(9): 2045-2052, doi: 10.1007/s11430-014-4866-8. Chang L J, Ding Z F, Wang C Y, et al. 2017. Vertical coherence of deformation in lithosphere in the NE margin of the Tibetan plateau using GPS and shear-wave splitting data. Tectonophysics, 699: 93-101, doi: 10.1016/j.tecto.2017.01.025. Chen T C, Booth D C, Crampin S. 1987. Shear-wave polarizations near the North Anatolian Fault-Ⅲ. Observations of temporal changes. Geophysical Journal International, 91(2): 287-311. Crampin S, Atkinson B K. 1985. Microcracks in the earth's crust. First Break, 3(3): 16-20. Crampin S, Zatsepin S V. 1997. Modelling the compliance of crustal rock-Ⅱ. Response to temporal changes before earthquakes. Geophysical Journal International, 129(3): 495-506. Crampin S, Volti T, Stefánsson R. 1999. A successfully stress-forecast earthquake. Geophysical Journal International, 138(1): F1-F5. Crampin S, Peacock S. 2005. A review of shear-wave splitting in the compliant crack-critical anisotropic Earth. Wave Motion, 41(1): 59-77. Crampin S, Gao Y. 2010. Earthquakes can be stress-forecast. Geophysical Journal International, 180(3): 1124-1127. Data Management Centre of China National Seismic Network. 2007. Waveform data of China national seismic network (in Chinese). Institute of Geophysics, China Earthquake Administration, doi:10.11998/SeisDmc/SN, http://www.seisdmc.ac.cn. Ding Z F, Wu Y, Wang H, et al. 2008. Variations of shear wave splitting in the 2008 Wenchuan earthquake region. Science in China Series D: Earth Sciences, 51(12): 1712-1716. Fang L H, Wu J P, Su J R, et al. 2018. Relocation of mainshock and aftershock sequence of the MS7.0 Sichuan Jiuzhaigou earthquake. Chinese Science Bulletin (in Chinese), 63(7): 649-662, doi: 10.1360/N972017-01184. Gao Y, Wang P D, Zheng S H, et al. 1998. Temporal changes in shear-wave splitting at an isolated swarm of small earthquakes in 1992 near Dongfang, Hainan Island, southern China. Geophysical Journal International, 135(1): 102-112. Gao Y, Crampin S. 2008. Shear-wave splitting and earthquake forecasting. Terra Nova, 20(6): 440-448. Gao Y, Wu J, Yi G X, et al. 2010. Crust-mantle coupling in North China: Preliminary analysis from seismic anisotropy. Chinese Science Bulletin, 55(31): 3599-3605. Gao Y, Wu J, Fukao Y, et al. 2011. Shear wave splitting in the crust in North China: Stress, faults and tectonic implications. Geophysical Journal International, 187(2): 642-654. Liu Y, Crampin S, Main I. 1997. Shear-wave anisotropy: Spatial and temporal variations in time delays at Parkfield, Central California. Geophysical Journal International, 130(3): 771-785. Peacock S, Crampin S, Booth D C, et al. 1988. Shear wave splitting in the Anza Seismic Gap, southern California: Temporal variations as possible precursors. Journal of Geophysical Research: Solid Earth, 93(B4): 3339-3356. Shi Y T, Gao Y, Wu J, et al. 2006. Seismic anisotropy of the crust in Yunnan, China: Polarizations of fast shear-waves. Acta Seismologica Sinica (in Chinese), 28(6): 574-585, doi: 10.3321/j.issn:0253-3782.2006.06.002. Shih X R, Meyer R P, Schneider J F. 1989. An automated, analytical method to determine shear-wave splitting. Tectonophysics, 165(1-4): 271-278. Tai L X, Gao Y, Cao F J, et al. 2008. Shear-wave splitting before and after the 1999 Xiuyan earthquake in Liaoning, China. Acta Seismologica Sinica (in Chinese), 30(4): 340-354, doi: 10.3321/j.issn:0253-3782.2008.04.002. Volit T, Crampin S. 2003. A four-year study of shear-wave splitting in Iceland: 1. Background and preliminary analysis. Geological Society, London, Special Publications, 212(1): 117-133. Wang C Y, Han W B, Wu J P, et al. 2007. Crustal structure beneath the eastern margin of the Tibetan Plateau and its tectonic implications. Journal of Geophysical Research: Solid Earth, 112(B7): B07307, doi: 10.1029/2005JB003873. Wang Q, Zhang P Z, Freymueller J T, et al. 2001. Present-day crustal deformation in China constrained by global positioning system measurements. Science, 294(5542): 574-547. Wen X Z, Du F, Zhang P Z, et al. 2011. Correlation of major earthquake sequences on the northern and eastern boundaries of the Bayan Har block, and its relation to the 2008 Wenchuan earthquake. Chinese Journal of Geophysics (in Chinese), 54(3): 706-716, doi: 10.3969/j.issn.0001-5733.2011.03.010. Wu J, Tai L X, Gao Y, et al. 2009. Discussions on stress accumulation before the 1999 Xiuyan MS5.9 earthquake in Liaoning, China. Earthquake (in Chinese), 29(3): 37-44. Xu X W, Chen G H, Wang Q X, et al. 2017. Discussion on seismogenic structure of Jiuzhaigou earthquake and its implication for current strain state in the southeastern Qinghai-Tibet Plateau. Chinese Journal of Geophysics (in Chinese), 60(10): 4018-4026, doi: 10.6038/cjg20171028. Xu Z H. 2001. A present-day tectonic stress map for eastern Asia region. Acta Seismologica Sinica (in Chinese), 23(5): 492-501, doi: 10.3321/j.issn:0253-3782.2001.05.005. Yang Y H, Fan J, Hua Q, et al. 2017. Inversion for the focal mechanisms of the 2017 Jiuzhaigou M7.0 earthquake sequence using near-field full waveforms. Chinese Journal of Geophysics (in Chinese), 60(10): 4098-4104, doi: 10.6038/cjg20171034. Yi G X, Long F, Liang M J, et al. 2017. Focal mechanism solutions and seismogenic structure of the 8 August 2017 M7.0 Jiuzhaigou earthquake and its aftershocks, northern Sichuan. Chinese Journal of Geophysics (in Chinese), 60(10): 4083-4097, doi: 10.6038/cjg20171033. Zhang P Z, Deng Q D, Zhang G M, et al. 2003. Active tectonic blocks and strong earthquakes in the continent of China. Science in China Series D: Earth Sciences, 46(S2): 13-24. Zhang X, Feng W P, Xu L S. 2017. The source-process inversion and the intensity estimation of the 2017 MS7.0 Jiuzhaigou earthquake. Chinese Journal of Geophysics (in Chinese), 60(10): 4105-4116, doi: 10.6038/cjg20171035. Zheng T, Ding Z F, Chang L J, et al. 2017. S-wave splitting in upper crust near the scientific drilling WFSD-3 at the Wenchuan earthquake fault zone. Chinese Journal of Geophysics (in Chinese), 60(5): 1690-1702, doi: 10.6038/cjg20170507. Zheng X F, Ouyang B, Zhang D N, et al. 2009. Technical system construction of Data Backup Centre for China Seismograph Network and the data support to researches on the Wenchuan earthquake. Chinese Journal of Geophysics (in Chinese), 52(5): 1412-1417, doi: 10.3969/j.issn.0001-5733.2009.05.031. 附中文参考文献 常利军, 丁志峰, 王椿镛. 2010. 2010年玉树7.1级地震震源区横波分裂的变化特征. 地球物理学报, 53(11): 2613-2619, doi: 10.3969/j.issn.0001-5733.2010.11.009. 常利军, 丁志峰, 王椿镛. 2015. 2013年芦山MS7.0地震震源区横波分裂的变化特征. 中国科学: 地球科学, 45(2): 161-168. 丁志峰, 武岩, 王辉等. 2008. 2008年汶川地震震源区横波分裂的 变化特征. 中国科学 D辑: 地球科学, 38(12): 1600-1604. 房立华, 吴建平, 苏金蓉等. 2018. 四川九寨沟MS7.0地震主震及其余震序列精定位. 科学通报, 63(7): 649-662, doi: 10.1360/N972017-01184. 高原, 吴晶, 易桂喜等. 2010. 从壳幔地震各向异性初探华北地区壳幔耦合关系. 科学通报, 2010, 55(29): 2837-2843. 国家测震台网数据备份中心. 2007. 国家测震台网地震波形数据. 中国地震局地球物理研究所, doi: 10.11998/SeisDmc/SN, http://www.seisdmc.ac.cn. 石玉涛, 高原, 吴晶等. 2006. 云南地区地壳介质各向异性——快剪切波偏振特性. 地震学报, 28(6): 574-585, doi: 10.3321/j.issn:0253-3782.2006.06.002. 太龄雪, 高原, 曹凤娟等. 2008. 辽宁1999年MS5.9岫岩地震的剪切波分裂特征. 地震学报, 30(4): 340-354, doi: 10.3321/j.issn:0253-3782.2008.04.002. 闻学泽, 杜方, 张培震等. 2011. 巴颜喀拉块体北和东边界大地震序列的关联性与2008年汶川地震. 地球物理学报, 54(3): 706-716, doi: 10.3969/j.issn.0001-5733.2011.03.010. 吴晶, 太龄雪, 高原等. 2009. 辽宁岫岩MS5.9地震前应力积累的讨论. 地震, 29(3): 37-44. 徐锡伟, 陈桂华, 王启欣等. 2017. 九寨沟地震发震断层属性及青藏高原东南缘现今应变状态讨论. 地球物理学报, 60(10): 4018-4026, doi: 10.6038/cjg20171028. 许忠淮. 2001. 东亚地区现今构造应力图的编制. 地震学报, 23(5): 492-501, doi: 10.3321/j.issn:0253-3782.2001.05.005. 杨宜海, 范军, 花茜等. 2017. 近震全波形反演2017年九寨沟M7.0地震序列震源机制解. 地球物理学报, 60(10): 4098-4104, doi: 10.6038/cjg20171034. 易桂喜, 龙锋, 梁明剑等. 2017. 2017年8月8日九寨沟M7.0地震及余震震源机制解与发震构造分析. 地球物理学报, 60(10): 4083-4097, doi: 10.6038/cjg20171033. 张培震, 邓起东, 张国民等. 2003. 中国大陆的强震活动与活动地块. 中国科学(D辑), 33(Z1): 12-20. 张旭, 冯万鹏, 许力生等. 2017. 2017年九寨沟MS7.0级地震震源过程反演与烈度估计. 地球物理学报, 60(10): 4105-4116, doi: 10.6038/cjg20171035. 郑拓, 丁志峰, 常利军等. 2017. 汶川地震断裂带科学深钻WFSD-3附近上地壳S波分裂特征. 地球物理学报, 60(5): 1690-1702, doi: 10.6038/cjg20170507. 郑秀芬, 欧阳飚, 张东宁等. 2009. "国家数字测震台网数据备份中心"技术系统建设及其对汶川大地震研究的数据支撑. 地球物理学报, 52(5): 1412-1417, doi: 10.3969/j.issn.0001-5733.2009.05.031.