ZHU ShouBiao,
YUAN Jie
.2018.Physical mechanism for extremely serious seismic damage in the Beichuan area caused by the great 2008 Wenchuan earthquake.Chinese Journal Of Geophysics,61(5): 1863-1873,doi: 10.6038/cjg2018M0111
2008年汶川大地震中北川地区极重震害的物理机制研究
朱守彪, 袁杰
中国地震局地壳应力研究所(地壳动力学重点实验室), 北京 100085
Physical mechanism for extremely serious seismic damage in the Beichuan area caused by the great 2008 Wenchuan earthquake
ZHU ShouBiao, YUAN Jie
Institute of Crustal Dynamics, China Earthquake Administration, Beijing 100085, China
Abstract:The Beichuan area suffered the most serious seismic damage during the 2008 Wenchuan earthquake although over 100 km away from the instrumental epicenter of the mainshock. The mechanism for this peculiar phenomenon remains unclear even though nearly 10 years has passed since the event. To address this issue, we construct a spontaneous rupture model in which the Gaochuan right bend (GRB) in the middle of the Yingxiu-Beichuan fault, a major seismogenic structure for the Wenchuan event, is included. The simulation results show that the complex geometry of the GRB plays a first-order role in controlling the rupture propagation. While rupture is initiated at the epicenter of the Wenchuan mainshock, it propagates spontaneously northeastward at a speed slower than the shear wave velocity of local media. When the rupture front spreads near the end of the Yingxiu-Gaochuan fault, a new rupture is re-nucleated at the curve section of the Gaochuan bend, and propagates in the NE direction with the speed greater than the S wave velocity. In particular, this rupture speed transition from subshear to supershear does not need time delay, much different from the case of a fault step over which was studied well by previous work. Due to the curved geometry of GRB, the stress regime on the fault section favors the occurrence of super-shear rupture. Once the super-shear rupture occurs along the Beichuan fault, seismic waves are focused and strongly amplified with the form of Mach waves. The numerical results also illustrate that high values of spatial distribution of the strong ground motion acceleration are mainly located in the Beichuan area, directly leading to grave seismic catastrophe. Therefore, this work may give some insight into why the most serious seismic damage occurred in the Beichuan area, and may have important implications for understanding earthquake dynamics and assessing seismic hazards.
Andrews D J. 2010. Ground motion hazard from supershear rupture. Tectonophysics, 439(3-4): 216-221. Bernard P, Baumont D. 2005. Shear Mach wave characterization for kinematic fault rupture models with constant supershear rupture velocity. Geophysical Journal International, 162(2): 431-447, doi: 10.1111/j.1365-246X.2005.02611.x. Bhat H S, Dmowska R, King G C P, et al. 2007. Off-fault damage patterns due to supershear ruptures with application to the 2001 MW8.1 Kokoxili (Kunlun) Tibet earthquake. Journal of Geophysical Research: Solid Earth, 112(B6): B06301, doi: 10.1029/2006JB004425. Bizzarri A, Dunham E M, Spudich P. 2010. Coherence of Mach fronts during heterogeneous supershear earthquake rupture propagation: Simulations and comparison with observations. Journal of Geophysical Research: Solid Earth, 115(B8): B08301, doi: 10.1029/2009JB006819. Cruz-Atienza V M, Olsen K B. 2010. Supershear Mach-waves expose the fault breakdown slip. Tectonophysics, 493(3-4): 285-296. Das S. 2007. The need to study speed. Science, 317(5840): 905-906. De Michele M, Raucoules D, De Sigoyer J, et al. 2010. Three-dimensional surface displacement of the 2008 May 12 Sichuan earthquake (China) derived from Synthetic Aperture Radar: evidence for rupture on a blind thrust. Geophysical Journal International, 183(3): 1097-1103. Deng Q D, Chen G H, Zhu A L. 2011. Discussion of rupture mechanisms on the seismogenic fault of the 2008 MS8.0 Wenchuan earthquake. Science China Earth Sciences, 54(9): 1360-1377. Du H L, Xu L S, Chen Y T. 2009. Rupture process of the 2008 great Wenchuan earthquake from the analysis of the Alaska-array data. Chinese Journal of Geophysics (in Chinese), 52(2): 372-378. Duan B C. 2010. Role of initial stress rotations in rupture dynamics and ground motion: A case study with implications for the Wenchuan earthquake. Journal of Geophysical Research: Solid Earth, 115(B5): B05301, doi: 10.1029/2009JB006750. Dunham E M, Archuleta R J. 2005. Near-source ground motion from steady state dynamic rupture pulses. Geophysical Research Letters, 32(3): L03302, doi: 10.1029/2004GL021793. Dunham E M, Bhat H S. 2008. Attenuation of radiated ground motion and stresses from three-dimensional supershear ruptures. Journal of Geophysical Research: Solid Earth, 113(B8): B08319, doi: 10.1029/2007JB005182. Feng G C, Hetland E A, Ding X L, et al. 2010. Coseismic fault slip of the 2008 MW7.9 Wenchuan earthquake estimated from InSAR and GPS measurements. Geophysical Research Letters, 37(1): L01302, doi: 10.1029/2009GL041213. Fielding E J, Sladen A, Li Z H, et al. 2013. Kinematic fault slip evolution source models of the 2008 M7.9 Wenchuan earthquake in China from SAR interferometry, GPS and teleseismic analysis and implications for Longmen Shan tectonics. Geophysical Journal International, 194(2): 1138-1166. Fu B H, Shi P L, Wang P, et al. 2009. Geometry and kinematics of the 2008 Wenchuan earthquake surface ruptures around the Qushan Town of Beichuan County, Sichuan: implications for mitigation of seismic and geologic disasters. Chinese Journal of Geophysics (in Chinese), 52(2): 485-495. Harris R A, Archuleta R J, Day S M. 1991. Fault steps and the dynamic rupture process: 2-D numerical simulations of a spontaneously propagating shear fracture. Geophysical Research Letters, 18(5): 893-896. Harris R A, Day S M. 1993. Dynamics of fault interaction: Parallel strike-slip faults. Journal of Geophysical Research: Solid Earth, 98(B3): 4461-4472. Hibbitt H, Karlsson B, Sorensen P. 2006. ABAQUS: Theory Manual. Huang Y H, Ampuero J P, Helmberger D V. 2016. The potential for supershear earthquakes in damaged fault zones-theory and observations. Earth and Planetary Science Letters, 433: 109-115. Liu Q, Li Y, Chen J,et al. 2009. Wenchuan MS8.0 earthquake: preliminary study of the S-wave velocity structure of the crust and upper mantle. Chinese Journal of Geophysics (in Chinese), 52: 309-319. Liu Q Y, Van Der Hilst R D, Li Y,et al. 2014. Eastward expansion of the Tibetan Plateau by crustal flow and strain partitioning across faults. Nature Geoscience, 7(5): 361-365. Pan J W, Li H B, Si J L, et al. 2014. Rupture process of the Wenchuan earthquake (MW7.9) from surface ruptures and fault striations characteristics. Tectonophysics, 619: 13-28. Ren J, Chen G, Xu X, et al. 2010. Surface rupture of the 2008 Wenchuan, China, earthquake in the Qingping stepover determined from geomorphologic surveying and excavation, and its tectonic implications. Bulletin of the Seismological Society of America, 100(5B): 2651-2659. Ryan K J, Oglesby D D. 2014. Dynamically modeling fault step overs using various friction laws. Journal of Geophysical Research: Solid Earth, 119(7): 5814-5829. Shen Z K, Sun J B, Zhang P Z, et al. 2009. Slip maxima at fault junctions and rupturing of barriers during the 2008 Wenchuan earthquake. Nature Geoscience, 2(10): 718-724, doi: 10.1038/ngeo636. Tapponnier P, Molnar P. 1977. Active faulting and tectonics in China. Journal of Geophysical Research, 82(20): 2905-2930. Tong X P, Sandwell D T, Fialko Y. 2010. Coseismic slip model of the 2008 Wenchuan earthquake derived from joint inversion of interferometric synthetic aperture radar, GPS, and field data. Journal of Geophysical Research: Solid Earth, 115(B4): B04314, doi: 10.1029/2009JB006625. Vallée M, Dunham E M. 2012. Observation of far-field Mach waves generated by the 2001 Kokoxili supershear earthquake. Geophysical Research Letters, 39(5): L05311, doi: 10.1029/2011GL050725. Wang C Y, Han W B, Wu J P,et al. 2007. Crustal structure beneath the eastern margin of the Tibetan Plateau and its tectonic implications. Journal of Geophysical Research: Solid Earth, 112(B7): B07307, doi: 10.1029/2005JB003873. Wang C Y, Mooney W D, Ding Z F, et al. 2009. Shallow seismic structure of Kunlun fault zone in northern Tibetan Plateau, China: implications for the 2001 MS8.1 Kunlun earthquake. Geophysical Journal International, 177(3): 978-1000. Wang D, Mori J, Koketsu K. 2016. Fast rupture propagation for large strike-slip earthquakes. Earth and Planetary Science Letters, 440: 115-126. Wang Q, Qiao X J, Lan Q G, et al. 2011. Rupture of deep faults in the 2008Wenchuan earthquake and uplift of the Longmen Shan. Natural Geoscience, 4(9): 634-640, doi: 10.1038/NGEO1210. Wang W M, Zhao L F, Li J, et al. 2008. Rupture process of the MS8.0 Wenchuan earthquake of Sichuan, China. Chinese Journal of Geophysics (in Chinese), 51(5): 1403-1410. Xu C J, Liu Y, Wen Y M, et al. 2010. Coseismic slip distribution of the 2008 MW7.9 Wenchuan earthquake from joint inversion of GPS and InSAR data. Bulletin of the Seismological Society of America, 100(5B): 2736-2749. Xu X W, Wen X Z, Ye J Q, et al. 2008. The MS8.0 Wenchuan earthquake surface ruptures and its seismogenic structure. Seismology and Geology (in Chinese), 30(3): 597-629. Yuan J, Zhu S B. 2014a. FEM simulation of the dynamic processes of fault spontaneous rupture. Chinese Journal of Geophysics (in Chinese), 57(1): 138-156. Yuan J, Zhu S B. 2014b. Effects of stepover on rupture propagation. Chinese Journal of Geophysics (in Chinese), 57(5): 1510-1521, doi: 10.6038/cjg20140515. Yuan J, Zhu S B. 2016. Distributions of strong ground motion due to dynamic ruptures across a bimaterial fault: Implications for seismic hazard analyses. Journal of Asian Earth Sciences, 131: 81-94. Yuan J, Zhu S B. 2017. Numerical simulation of seismic supershear rupture process facilitated by a fault stepover. Chinese Journal of Geophysics (in Chinese), 60(1): 212-224, doi: 10.6038/cjg20170118. Yue H, Lay T, Freymueller J T, et al. 2013. Supershear rupture of the 5 January 2013 Craig, Alaska (MW7.5) earthquake. Journal of Geophysical Research: Solid Earth, 118(11): 5903-5919. Zhang P Z. 2008. Present-day deformation, strain partition and dynamic processes on the eastern margin of the Tibetan plateau (in Chinese). Science in China Series D: Earth Sciences, 38(9): 1041-1056. Zhang P Z, Wen X Z, Shen Z K, et al. 2010. Oblique, high-angle, listric-reverse faulting and associated development of strain: The Wenchuan earthquake of May 12, 2008, Sichuan, China. Annual Review of Earth and Planetary Sciences, 38(1): 353-382. Zhang Y, Wang R, Zschau J, et al. 2014. Automatic imaging of earthquake rupture processes by iterative deconvolution and stacking of high-rate GPS and strong motion seismograms, Journal of Geophysical Research: Solid Earth, 119,5633-5650, doi:10.1002/ 2013JB010469. Zhu S B, Shi Y L, Cai Y E. 2006. The contemporary tectonic strain rate field of continental China predicted from GPS measurements and its geodynamics implications.Pure and Applied Geophysics, 2006, 163: 1477-1493. Zhu S B, Shi Y L.2007. Origin of tectonic stresses in the Chinese continent and adjacent areas. Science in China Series D: Earth Sciences, 50(1): 67-74. Zhu S B, Zhang P Z. 2009. A study on the dynamical mechanisms of the Wenchuan MS8.0 earthquake, 2008. Chinese Journal of Geophysics (in Chinese), 52(2): 418-427. Zhu S B, Zhang P Z. 2010. Numeric modeling of the strain accumulation and release of the 2008 Wenchuan, Sichuan, China, Earthquake. Bulletin of the Seismological Society of America, 100(5B): 2825-2839. Zhu S B, Shi Y L.2011. Estimation of GPS strain rate and its error analysis in the Chinese continent. Journal of Asian Earth Sciences. 40(1): 351-362. Zhu S B. 2013. Numerical simulation of dynamic mechanisms of the 2008 Wenchuan MS8.0 earthquake: implications for earthquake prediction. Natural Hazards, 69(2): 1261-1279. Zhu S B, Zhang P Z. 2013. FEM simulation of interseismic and coseismic deformation associated with the 2008 Wenchuan earthquake. Tectonophysics, 2013, 584: 64-80, doi: 10.1016/j.tecto.2012.06.024. Zhu S B, Yuan J. 2016. Mechanisms for the fault rupture of the 2008 Wenchuan earthquake (MS=8.0) with predominately unilateral propagation. Chinese Journal of Geophysics (in Chinese), 59(10): 4063-4074, doi: 10.6038/cjg20161111. Zhu S B, Yuan J, Miao M. 2017. Dynamic mechanisms for supershear rupture processes of the Yushu earthquake (MS=7.1). Chinese Journal of Geophysics (in Chinese), 60(10): 3832-3843, doi: 10.6038/cjg20171013. 附中文参考文献 杜海林,许力生,陈运泰. 2009. 利用阿拉斯加台阵资料分析2008年汶川大地震的破裂过程. 地球物理学报,52(2): 372-378. 刘启元, 李昱,陈九辉等. 汶川MS8.0地震:地壳上地幔S波速度结构的初步研究. 地球物理学报,52(2):309-319. 王卫民,赵连锋,李娟等. 2008. 四川汶川8.0级地震震源过程. 地球物理学报, 51(5): 1403-1410. 徐锡伟,闻学泽,叶建青等. 2008. 汶川MS8.0地震地表破裂带及其发震构造. 地震地质,30(3): 597-629. 袁杰, 朱守彪. 2014a. 断层自发破裂动力过程的有限单元法模拟. 地球物理学报, 57(1): 138-156. 袁杰, 朱守彪. 2014b. 断层阶区对震源破裂传播过程的控制作用研究. 地球物理学报, 57(5): 1510-1521, doi: 10.6038/cjg20140515. 袁杰, 朱守彪. 2017. 断层阶区对产生超剪切地震破裂的促进作用. 地球物理学报, 60(1): 212-224, doi: 10.6038/cjg20170118. 张培震. 2008. 青藏高原东缘川西地区的现今构造变形、应变分配与深部动力过程, 中国科学D辑: 38(9): 1041-1056. 张勇,冯万鹏,许力生等. 2008. 2008年汶川大地震的时空破裂过程. 中国科学D辑: 地球科学, 2008, 38(10): 1186-1194. 朱守彪,张培震,2009. 2008年汶川MS8.0地震发生过程的动力学机制研究. 地球物理学报, 52(2): 418-427. 朱守彪, 袁杰. 2016. 2008年汶川大地震单侧破裂过程的动力学机制研究. 地球物理学报, 59(11): 4063-4074,doi: 10.6038/cjg20161111. 朱守彪,袁杰,缪淼. 2017. 青海玉树地震(MS=7.1)产生超剪切破裂过程的动力学机制研究. 地球物理学报,60(10): 3832-3843,doi: 10.6038/cjg20171013.