SHI HaoYu,
MA NianJie,
MA Ji
.2018.Numerical simulation for the formation process of the Longmenshan fault zone and its crustal stress state.Chinese Journal Of Geophysics,61(5): 1817-1823,doi: 10.6038/cjg2018L0386
Numerical simulation for the formation process of the Longmenshan fault zone and its crustal stress state
SHI HaoYu1,2, MA NianJie1, MA Ji1
1. College of Resources and Safety Engineering, China University of Mining and Technology(Beijing), Beijing 100083, China; 2. North China Institute of Science and Technology, Beijing 101601, China
Abstract:Based on characteristics of tectonic movement around the Longmenshan Mountains and mechanical properties of deep rock mass, we applied the software FLAC to analyze the formation process of Longmenshan fault zone and the geometrical distribution characteristics of plastic belts. The study suggests that the Wenchuan-Maoxian fault F1, Yingxiu-Beichuan fault F2 and Guanxian-Anxian fault F3 began to shape from the middle, then the upper plastic region gradually developed to the surface. The fault F1 first appeared, successively followed by F2 and F3. The angle between these plastic zones's development directions and the horizontal plane was approximately 40 degrees, with their own conjugate faults which were roughly consistent with the actual Longmenshan fault zone. It indicates that regional tectonic movement was the main cause for the generation of the Longmenshan fault. This study also revealed the variation law of block's principal stress during regional tectonic movement. It included 2 stages. Firstly, in the early stage of block compression, principal stress increased with the growing block's displacement. Secondly, the principal stress remains relatively stable, while the ratio of the maximum to minimum principal stress as the critical failure rock was generally between 3.31~4.39.
Bak P, Tang C, Wiesenfeld K. 1987. Self-organized criticality: An explanation of the 1/f noise. Physical Review Letters, 59(4): 381-384. Brown E T, Bendick R, Bourlès L D, et al. 2002. Slip rates of the Karakorum fault, Ladakh, India, determined using cosmic ray exposure dating of debris flows and moraines. Journal of Geophysical Research:Solid Earth, 107(B9): 2192, doi: 10.1029/2000JB000100. Burchfiel B C, Chen Z L, Liu Y P, et al. 1995. Tectonics of the Longmen Shan and adjacent regions, Central China. International Geology Review, 37(8): 661-735. Cai M F, Wang S H. 1997. Relation between ground stress behavior and properties of surrounding rock. China Mining Magazine (in Chinese), 6(6): 38-41. Chen G G, Ji F J, Zhou R J, et al. 2007. Primary research of activity segmentation of Longmenshan fault zone since late-Quaternary. Seismology and Geology (in Chinese), 29(3): 657-673. Deng Q D, Chen S F, Zhao X L. 1994. Tectonics, seismicity and dynamics of Longmenshan mountains and its adjacent regions. Seismology and Geology (in Chinese), 16(4): 389-403. England P C. 1986. Finite strain calculations of continental deformation: 2. Comparison with the India-Asia collision zone. Journal of Geophysical Research: Solid Earth, 91(B3): 3664-3676. England P C, Houseman G. 1988. The Mechanics of the Tibetan Plateau. London: Philosophical Transactions of the Royal Society. Fu B H, Shi P L, Zhang Z W. 2008. Spatial characteristics of the surface rupture produced by the MS8.0 Wenchuan earthquake using high-resolution remote sensing imagery. Acta Geologica Sinica (in Chinese), 82(12): 1679-1687. Harrison T M, Copeland P, Kidd W S F, et al. 1992. Raising Tibet. Science, 255(5052): 1663-1670. Hu X P, Cui X F, Ning J Y, et al. 2012. Preliminary study on tectonic deformation models in the Longmenshan region based on focal mechanism solutions of the Wenchuan earthquake sequence. Chinese Journal of Geophysics (in Chinese), 55(8): 2561-2574, doi: 10.6038/j.issn.0001-5733.2012.08.008. Lai X A, Huang L R, Xu J S. 2004. Present-Day Crustal Movement in China Constrained (in Chinese). Beijing: Seismological Press. Liu C, Shi Y L, Zhu B J, et al. 2014. Crustal rheology control on the mechanism of the earthquake generation at the Longmen Shan fault. Chinese Journal of Geophysics (in Chinese), 57(2): 404-418, doi: 10.6038/cjg20140207. Ma N J, Li J, Zhao Z Q. 2015. Distribution of the deviatoric stress field and plastic zone in circular roadway surrounding rock. Journal of China University of Mining & Technology (in Chinese), 44(2): 206-213. Molnar P, Tapponnier. 1975. Cenozoic tenozoic tectonics of Asia: Effects of a continental collision. Science, 189(4201): 419-426. Qin X H, Tan C X, Sun J Z, et al. 2012. Experimental study of relation between in-situ crustal stress and rock elastic modulus. Rock and Soil Mechanics (in Chinese), 33(6): 1689-1695. Royden L H, Burchfiel B C, King R W, et al. 1997. Surface deformation and lower crustal flow in eastern Tibet. Science, 276(5313): 788-790. Sugisaki R. 1976. Chemical characteristics of volcanic rocks: relation to plate movements. Lithos, 9(1): 17-30. Teng J W, Pi J L, Yang H, et al. 2014. Wenchuan-Yingxiu MS8.0 earthquake seismogenic faults and deep dynamic response. Chinese Journal of Geophysics (in Chinese), 57(2): 392-403, doi: 10.6038/cjg20140206. Van Der VooR, Spakman W, Bijwaard H. 1997. Tethyan subducted slabs under India. Earth and Planetary Science Letters, 171(1): 7-20. Wan T F, Ren Z H. 1999. Research on the intraplate deformation velocity of China in meso-Cenozoic. Geoscience (in Chinese), 13(1): 83-92. Wang L J, Cui J W, Zhou C J, et al. 2009. Numerical modeling for Wenchuan earthquake mechanism. Journal of Geomechanics (in Chinese), 12(5): 105-113. Xie F R, Cui X F, Zhao J T. 2003. Analysis of global tectonic stress field. Earth Science Frontiers (in Chinese), 10(S1): 22-30. Xiong H, Fu X M, Wang C Y, et al. 2015. Experimental study of sandstone under different confining pressure deformation characteristics. China Measurement & Test (in Chinese), 41(3): 113-116, 120. Xu J R, Zhao Z X, Yuzo I. 2008. Regional characteristics of crustal stress field and tectonic motions in and around Chinese mainland. Chinese Journal of Geophysics (in Chinese), 51(3): 770-781. Yan Z K, Li Y, Zhao G H, et al. 2014. The relationship between Lushan earthquake and Wenchuan earthquake by segmentation of geology and geomorphology of Longmen Shan. Chinese Journal of Nature (in Chinese), 36(1): 51-58. Yang M J, Yu X B, Li J H. 2012. Comparative analysis for slope stability by ANSYS and FLAC. Science Technology and Engineering (in Chinese), 12(24): 6241-6244, 6251. Ye Z R, Wang J. 2004. Dynamics of present-day crustal movement in the China mainland. Chinese Journal of Geophysics (in Chinese), 47(3): 456-461. Yi G X, Wen X Z, Xin H, et al. 2013. Stress state and major-earthquake risk on the southern segment of the Longmen Shan fault zone. Chinese Journal of Geophysics (in Chinese), 56(4): 1112-1120, doi: 10.6038/cjg20130407. Zeng R S, Zhu J S, Zhou B, et al. 1992. Seismicity and focal mechanism in Tibetan Plateau and its implications to lithospheric flow. Acta Seismologica Sinica (in Chinese), 14(S1): 523-533. Zhao Z Q, Ma N J, Jia H S, et al. 2013. Partitioning characteristics of gas channel of coal-rock mass in mining space and gas orientation method. International Journal of Mining Science and Technology, 23(6): 873-877. Zhu S B, Zhang P Z. 2009. A study on the dynamical mechanisms of the Wenchuan MS8.0 earthquake, 2008. Chinese Journal of Geophysics (in Chinese), 52(2): 418-427. 附中文参考文献 蔡美峰, 王双红. 1997. 地应力状态与围岩性质的关系研究. 中国矿业, 6(6): 38-41. 陈国光, 计凤桔, 周荣军等. 2007. 龙门山断裂带晚第四纪活动性 分段的初步研究. 地震地质, 29(3): 657-673. 邓起东, 陈社发, 赵小麟. 1994. 龙门山及其邻区的构造和地震活动及动力学. 地震地质, 16(4): 389-403. 付碧宏, 时丕龙, 张之武. 2008. 四川汶川MS8.0大地震地表破裂带的遥感影像解析. 地质学报, 82(12): 1679-1687. 胡幸平, 崔效锋, 宁杰远等. 2012. 基于汶川地震序列震源机制解对龙门山地区构造变形模式的初步探讨. 地球物理学报, 55(8): 2561-2574, doi: 10.6038/j.issn.0001-5733.2012.08.008. 赖锡安, 黄立人, 徐菊生. 2004. 中国大陆现今地壳运动. 北京: 地震出版社. 柳畅, 石耀霖, 朱伯靖等. 2014. 地壳流变结构控制作用下的龙门山断裂带地震发生机理. 地球物理学报, 57(2): 404-418, doi: 10.6038/cjg20140207. 马念杰, 李季, 赵志强. 2015. 圆形巷道围岩偏应力场及塑性区分布规律研究. 中国矿业大学学报, 44(2): 206-213. 秦向辉, 谭成轩, 孙进忠等. 2012. 地应力与岩石弹性模量关系试验研究. 岩土力学, 33(6): 1689-1695. 沈明荣, 陈建峰. 2006. 岩体力学. 上海: 同济大学出版社. 苏生瑞, 黄润秋, 王士天. 2002. 断裂构造对地应力场的影响及其工程应用. 北京: 科学出版社. 滕吉文, 皮娇龙, 杨辉等. 2014. 汶川—映秀MS8.0地震的发震断裂带和形成的深层动力学响应. 地球物理学报, 57(2): 392-403, doi: 10.6038/cjg20140206. 万天丰. 1993. 中国东部中、新生代板内变形构造应力场及其应用. 北京: 地质出版社. 万天丰, 任之鹤. 1999. 中国中、新生代板内变形速度研究. 现代地质, 13(1): 83-92. 王连捷, 崔军文, 周春景等. 2009. 汶川5.12地震发震机理的数值模拟. 地质力学学报, 12(5): 105-113. 王涛, 韩煊, 赵先宇等. 2015. FlAC3D数值模拟方法及工程应用——深入剖析FLAC3D5.0. 北京: 中国建筑工业出版社. 谢富仁, 崔效锋, 赵建涛. 2003. 全球应力场与构造分析. 地学前缘, 10(S1): 22-30. 熊魂, 付小敏, 王从颜等. 2015. 砂岩在不同围压条件下变形特征的试验研究. 中国测试, 41(3): 113-116, 120. 徐纪人, 赵志新, 石川有三. 2008. 中国大陆地壳应力场与构造运动区域特征研究. 地球物理学报, 51(3): 770-781. 徐芝纶. 1980. 弹性力学简明教程. 北京: 高等教育出版社. 颜照坤, 李勇, 赵国华等. 2014. 从龙门山地质地貌分段性探讨芦山地震与汶川地震的关系. 自然杂志, 36(1): 51-58. 杨铭键, 余贤斌, 黎剑华. 2012. 基于ANSYS与FLAC的边坡稳定性对比分析. 科学技术与工程, 12(24): 6241-6244, 6251. 叶正仁, 王建. 2004. 中国大陆现今地壳运动的动力学机制. 地球物理学报, 47(3): 456-461. 易桂喜, 闻学泽, 辛华等. 2013. 龙门山断裂带南段应力状态与强震危险性研究. 地球物理学报, 56(4): 1112-1120, doi: 10.6038/cjg20130407. 曾融生, 朱介寿, 周兵等. 1992. 青藏高原及其东部邻区的三维地震波速度结构与大陆碰撞模型. 地震学报, 14(S1): 523-533. 张培震. 2008. 青藏高原东缘川西地区的现今构造变形、应变分配与深部动力过程. 中国科学D辑: 地球科学, 38(9): 1041-1056. 朱守彪, 张培震. 2009. 2008年汶川MS8.0地震发生过程的动力学机制研究. 地球物理学报, 52(2): 418-427.