YANG XiaoSong,
DUAN QingBao,
CHEN JianYe
.2018.Fluid-rock interactions and their effects on the evolution of the Wenchuan earthquake fault zone.Chinese Journal Of Geophysics,61(5): 1758-1770,doi: 10.6038/cjg2018M0232
汶川地震断裂带水岩相互作用及其对断裂带演化影响
杨晓松1, 段庆宝1, 陈建业1,2
1. 中国地震局地质研究所, 地震动力学国家重点实验室, 北京 100029; 2. HPT Laboratory, Department of Earth Sciences, Utrecht University, Utrecht, The Netherlands
Fluid-rock interactions and their effects on the evolution of the Wenchuan earthquake fault zone
YANG XiaoSong1, DUAN QingBao1, CHEN JianYe1,2
1. State Key Laboratory of Earthquake Dynamics, Institute of Geology, China Earthquake Administration, Beijing 100029, China; 2. HPT Laboratory, Department of Earth Sciences, Utrecht University, Utrecht, The Netherlands
Abstract:Mineralogical and geochemical results of the Wenchuan earthquake fault rocks reveal long-term evolution and fluid-rock interactions in the fault zone. Interseismic fluid-rock interaction altered the fault rocks and results in the depletion of felsic minerals and precipitation of clay minerals (smectite, illite, mixed layers of illite and smectite and chlorite). Hydrothermal minerals, such as pyrite, gypsum, barite and palygorskite, are widely present in the fault zone. The fault rocks are rich in Mg, P, Ti, Mn and Fe, but deplete Si, K and Na elements. Mass remove of fault rocks lead to significant volume loss in the fault zone. Experimental results indicate that gas permeability of fault rocks is higher than that measured by water, being attributed to the hydrophilic property of clay minerals, which lead to the reduction of effective pore space and thereby lowering permeability. Pores in fault rocks can withstand confining pressure up to 600 MPa, implying that fluids at depths may be sealed to build up excess pore pressure. Fluid alteration modified the mineralogy and particle size distribution of fault rocks, and therefore it is not applicable to estimate the rupture energy of earthquake by particle size distribution data.
Bradbury K K, Davis C R, Shervais J W, et al. 2015. Composition, alteration, and texture of fault-related rocks from SAFOD core and surface outcrop analogs: Evidence for deformation processes and fluid-rock interactions. Pure and Applied Geophysics, 172(5): 1053-1078. Brantley S L, Evans B, Hickman S H, et al. 1990. Healing of microcracks in quartz: Implications for fluid flow. Geology, 18(2): 136-139. Brantut N R, Han T, Shimamoto N, et al. 2011. Fast slip with inhibited temperature rise due to mineral dehydration: Evidence from experiments on gypsum. Geology, 39(1): 59-62. Byerlee J D. 1993. Model for episodic flow of high-pressure water in fault zones before earthquakes. Geology, 21(4): 303-306. Caine J S, Evans J P, Forster C B. 1996. Fault zone architecture and permeability structure. Geology, 24(11): 1025-1028. Caine J S, Forster C B. 1999. Fault zone architecture and fluid flow: Insights from field data and numerical modeling.//Haneberg W C, Mozley P S, Moore J C, eds. Faults and Subsurface Fluid Flow in the Shallow Crust. Washington, D. C: Geophysical Monograph Series, 113: 101-127, doi: 10.1029/GM113p0101. Chen J Y, Yang X S, Dang J X, et al. 2011. Internal structure and permeability of Wenchuan earthquake fault. Chinese Journal of Geophysics (in Chinese), 54(7): 1805-1816, doi:10.3969/j.issn.0001-5733.2011.07.014. Chen J Y, Yang X S, Duan Q B, et al. 2013a. Importance of thermochemical pressurization in the dynamic weakening of the Longmenshan fault during the 2008 Wenchuan earthquake: Inferences from experiments and modeling. Journal of Geophysical Research: Solid Earth, 118(8): 4145-4169. Chen J Y, Yang X S, Ma S L, et al. 2013b. Mass removal and clay mineral dehydration/rehydration in carbonate-rich surface exposures of the 2008 Wenchuan Earthquake fault: Geochemical evidence and implications for fault zone evolution and coseismic slip. Journal of Geophysical Research: Solid Earth, 118(2): 474-496. Chen J Y, Yang X S, Yao L, et al. 2013c. Frictional and transport properties of the 2008 Wenchuan Earthquake fault zone: Implications for coseismic slip-weakening mechanisms. Tectonophysics,603:237-256. Chen J Y, Yang X S. 2014. Characteristics of particle size distribution of the Wenchuan earthquake fault zone: Insights for cataclastic mechanisms. Seismology and Geology (in Chinese), 36(2): 368-379. Chen J Y, Yang X S, Ma S L, et al. 2016. Hydraulic properties of samples retrieved from the Wenchuan earthquake Fault Scientific Drilling Project hole-1 (WFSD-1) and the surface rupture zone: Implications for coseismic slip weakening and fault healing. Geochemistry, Geophysics, Geosystems, 17(7): 2717-2744, doi: 10.1002/2016GC006376. Chen WM D, Tanaka H, Huang H J, et al. 2007. Fluid infiltration associated with seismic faulting: Examining chemical and mineralogical compositions of fault rocks from the active Chelungpu fault. Tectonophysics, 443(3-4): 243-254. Collettini C, Viti C, Tesei T, et al. 2013. Thermal decomposition along natural carbonate faults during earthquakes. Geology, 41(8): 927-930. De Meer S, Spiers C J, Peach C J. 1997. Pressure solution creep in gypsum: Evidence for precipitation reaction control. Physics and Chemistry of the Earth, 22(1-2): 33-37. Duan Q B, Yang X S. 2014. Experimental studies on gas and water permeability of fault rocks from the rupture of the 2008 Wenchuan earthquake, China. Science China Earth Sciences, 57(11): 2825-2834. Duan Q B. 2015. Geochemical and petrophysical responses to fluid processes within seismogenic fault zone: Exemplified by a granitic rupture zone on the Longmenshan Fault (in Chinese). Institute of Geology, China Earthquake Administration. Duan Q B, Yang X S, Ma S L, et al. 2016. Fluid-rock interactions in seismic faults: Implications from the structures and mineralogical and geochemical compositions of drilling cores from the rupture of the 2008 Wenchuan earthquake, China. Tectonophysics, 666: 260-280. Duan Q B, Yang X S, Chen J Y. 2017. Hydraulic properties of a low permeable rupture zone on the Yingxiu-Beichuan Fault activated during the Wenchuan earthquake, China: Implications for fluid conduction, fault sealing, and dynamic weakening mechanisms. Tectonophysics, 721: 123-142. Evans J P, Chester F M. 1995. Fluid-rock interaction in faults of the San Andreas system: Inferences from San Gabriel fault rock geochemistry and microstructures. Journal of Geophysical Research: Solid Earth, 100(B7): 13007-13020. Evans J P, Forster C B, Goddard J V. 1997. Permeability of fault-related rocks, and implications for hydraulic structure of fault zones. Journal of Structural Geology, 19(11): 1393-1404. Faulkner D R, Rutter E H. 2000. Comparisons of water and argon permeability in natural clay-bearing fault gouge under high pressure at 20℃. Journal of Geophysical Research: Solid Earth, 105(B7): 16415-16426. Faulkner D R, Rutter E H. 2003. The effect of temperature, the nature of the pore fluid, and subyield differential stress on the permeability of phyllosilicate-rich fault gouge. Journal of Geophysical Research: Solid Earth, 108(B5): 2227, doi: 10.1029/2001JB001581. Faulkner D R, Jackson C A L, Lunn R J, et al. 2010. A review of recent developments concerning the structure, mechanics and fluid flow properties of fault zones. Journal of Structural Geology, 32(11): 1557-1575. García-Ruiz J M, Villasuso R, Ayora C, et al. 2007. Formation of natural gypsum megacrystals in Naica, Mexico. Geology, 35(4): 327-330. Goddard J V, Evans J P. 1995. Chemical changes and fluid-rock interaction in faults of crystalline thrust sheets, northwestern Wyoming, U.S.A. Journal of Structural Geology, 17(4): 533-547. Han R, Shimamoto T, Hirose T, et al. 2007. Ultralow friction of carbonate faults caused by thermal decomposition. Science, 316(5826): 878-881. He C H, Wang Z L, Yao W M. 2007. Frictional sliding of gabbro gouge under hydrothermal conditions. Tectonophysics, 445(3-4): 353-362. Hirono T, Ikehara M, Otsuki K, et al. 2006. Evidence of frictional melting from disk-shaped black material, discovered within the Taiwan Chelungpu fault system. Geophysical Research Letters, 33(19): L19311, doi: 10.1029/2006GL027329. Hirono T, Fujimoto K, Yokoyama T, et al. 2008. Clay mineral reactions caused by frictional heating during an earthquake: An example from the Taiwan Chelungpu fault. Geophysical Research Letters, 35(16): L16303, doi: 10.1029/2008GL034476. Hirose T, Bystricky M. 2007. Extreme dynamic weakening of faults during dehydration by coseismic shear heating. Geophysical Research Letters, 34(14): L14311, doi: 10.1029/2007GL030049. Hoffman J, Hower J. 1979. Clay mineral assemblages as low grade metamorphic geothermometers: Application to the thrust faulted disturbed belt of Montana, U.S.A. SEPM Special Publication, 26: 55-79. Holdsworth R E, Van Diggelen E W E, Spiers C J, et al. 2011. Fault rocks from the SAFOD core samples: Implications for weakening at shallow depths along the San Andreas Fault, California. Journal of Structural Geology, 33(2): 132-144. Hooke R L, Iverson N R. 1995. Grain-size distribution in deforming subglacial tills: Role of grain fracture. Geology, 23(1): 57-60. Isaacs A J, Evans J P, Song S R, et al. 2007. Structural, mineralogical, and geochemical characterization of the Chelungpu thrust fault, Taiwan. Terrestrial, Atmospheric and Oceanic Sciences,18(2):183-221. Ishikawa T, Tanimizu M, Nagaishi K, et al. 2008. Coseismic fluid-rock interactions at high temperatures in the Chelungpu fault. Nature Geoscience, 1(10): 679-683. Kerrich R, Kamineni D C. 1988. Characteristics and chronology of fracture—fluid infiltration in the Archean, Eye Dashwa Lakes pluton, Superior Province: Evidence from H, C, O-isotopes and fluid inclusions. Contributions to Mineralogy and Petrology, 99(4): 430-445. Lin A M, Takano S, Hirono T, et al. 2013. Coseismic dehydration of serpentinite: Evidence from high-velocity friction experiments. Chemical Geology, 344: 50-62. Lockner D A, Naka H, Tanaka H, et al. 2000. Permeability and strength of core samples from the Nojima fault of the 1995 Kobe earthquake.//Proceedings of the International Workshop on the Nojima Fault Core and Borehole Data Analysis. Tsukuba: U.S. Geology Survey, 22-23. Ma K F, Tanaka H, Song S R, et al. 2006. Slip zone and energetics of a large earthquake from the Taiwan Chelungpu-fault Drilling Project. Nature, 444(7118): 473-476. Matsuda T, Omura K, Ikeda R, et al. 2004. Fracture-zone conditions on a recently active fault: Insights from mineralogical and geochemical analyses of the Hirabayashi NIED drill core on the Nojima fault, southwest Japan, which ruptured in the 1995 Kobe earthquake. Tectonophysics, 378(3-4): 143-163. Mishima T, Hirono W, Soh S, et al. 2006. Thermal history estimation of the Taiwan Chelungpu fault using rock-magnetic methods. Geophysical Research Letters, 33(23): L23311, doi: 10.1029/2006GL028088. Mizoguchi K, Hirose T, Shimamoto T, et al. 2008. Internal structure and permeability of the Nojima fault, southwest Japan. Journal of Structural Geology, 30(4): 513-524. Moore D E, Lockner D A. 2007. Friction of the smectite clay montmorillonite: A review and interpretation of data.//Dixon T, Moore J C eds. The Seismogenic Zone of Subduction Thrust Faults. New York: Columbia University Press, 317-345. Morrow C A, Shi L Q, Byerlee J B. 1981. Permeability and strength of San Andreas fault gouge under high pressure. Geophysical Research Letters, 8(4): 325-328. Morton N, Girty G H, Rockwell T K. 2012. Fault zone architecture of the San Jacinto fault zone in Horse Canyon, southern California: A model for focused post-seismic fluid flow and heat transfer in the shallow crust. Earth and Planetary Science Letters, 329-330: 71-83. O'Hara K. 1988. Fluid flow and volume loss during mylonitization: An origin for phyllonite in an overthrust setting, North Carolina U.S.A. Tectonophysics, 156(1-2): 21-36. Polak A, Elsworth D, Yasuhara H, et al. 2003. Permeability reduction of a natural fracture under net dissolution by hydrothermal fluids. Geophysical Research Letters, 30(20): 2020, doi: 10.1029/2003GL017575. Ran Y K, Chen L C, Chen J, et al. 2010. Paleoseismic evidence and repeat time of large earthquakes at three sites along the Longmenshan fault zone. Tectonophysics, 491(1-4): 141-153. Ran Y K, Chen W S, Xu X W, et al. 2013. Paleoseismic events and recurrence interval along the Beichuan-Yingxiu fault of Longmenshan fault zone, Yingxiu, Sichuan, China. Tectonophysics, 584: 81-90. Rice J R. 1992. Fault stress states, pore pressure distributions, and the weakness of the San Andreas fault.//Evans B, Wong T F eds. Fault Mechanics and Transport Properties of Rocks. London: Academic Press, 475-503. Robinson D, Schmidt S T, Zamora D, et al. 2002. Reaction pathways and reaction progress for the smectite-to-chlorite transformation: Evidence from hydrothermally altered metabasites. Journal of Metamorphic Geology, 20(1): 167-174. Roland P, Ola K. 1996. Physico/chemical stability of smectite clays. Engineering Geology, 41(1-4): 73-85. Sammis C G, Osborne R H, Anderson J L, et al. 1986. Self-similar cataclasis in the formation of fault gouge. Pure and Applied Geophysics, 124(1-2): 53-78. Schleicher A M, Tourscher S N, Van Der Pluijm B A, et al. 2009. Constraints on mineralization, fluid-rock interaction, and mass transfer during faulting at 2-3 km depth from the SAFOD drill hole. Journal of Geophysical Research: Solid Earth, 114(B4): B04202, doi: 10.1029/2008JB006092. Schleicher A M, Van Der Pluijm B A, Warr L N. 2012. Chlorite-smectite clay minerals and fault behavior: New evidence from the San Andreas Fault Observatory at Depth (SAFOD) core. Lithosphere, 4(3): 209-220. Seront B, Wong T F, Caine J S, et al. 1998. Laboratory characterization of hydromechanical properties of a seismogenic normal fault system. Journal of Structural Geology, 20(7): 865-881. Sibson R H. 1973. Interactions between temperature and pore-fluid pressure during earthquake faulting—A mechanism for partial or total stress relief. Nature, 243(126): 66-68, doi: 10.1038/physci243066a0. Sibson R H, Robert F, Poulsen H. 1988. High-angle reverse faults, fluid-pressure cycling, and mesothermal gold-quartz deposits. Geology, 16(6): 551-555. Sibson R H. 1992. Implications of fault-valve behaviour for rupture nucleation and recurrence. Tectonophysics, 211(1-4): 283-293. Solum J G, Hickman S H, Lockner D A, et al. 2006. Mineralogical characterization of protolith and fault rocks from the SAFOD main hole. Geophysical Research Letters, 33(21): L21314, doi: 10.1029/2006GL027285. Solum J G, Davatzes N C, Lockner D A. 2010. Fault-related clay authigenesis along the Moab Fault: Implications for calculations of fault rock composition and mechanical and hydrologic fault zone properties. Journal of Structural Geology, 32(12): 1899-1911. Suchecki R K, Perry E A, Hubert J F. 1977. Clay petrology of Cambro-Ordovician continental margin, Cow Head Klippe, western Newfoundland. Clays and Clay Minerals, 25(3): 163-170. Sulem J, Famin V. 2009. Thermal decomposition of carbonates in fault zones: Slip-weakening and temperature-limiting effects. Journal of Geophysical Research: Solid Earth, 114(B3): B03309, doi: 10.1029/2008JB006004. Tanaka H, Fujimoto K, Ohtani T, et al. 2001. Structural and chemical characterization of shear zones in the freshly activated Nojima fault, Awaji Island, southwest Japan. Journal of Geophysical Research: Solid Earth, 106(B5): 8789-8810. Velde B, Suzuki T, Nicot E. 1986. Pressure-temperature-composition of illite/smectite mixed-layer minerals: Niger delta mudstones and other examples. Clays and Clay Minerals, 34(4): 435-441. Vrolijk P, Van Der Pluijm B A. 1999. Clay gouge. Journal of Structural Geology, 21(8-9): 1039-1048. Wang J Y. 1996. Geothermics in China. Beijing: Seismological Press. Wibberley C A J, Shimamoto T. 2005. Earthquake slip weakening and asperities explained by thermal pressurization. Nature, 436(7051): 689-692. Wilson B, Dewers T, Reches Z, et al. 2005. Particle size and energetics of gouge from earthquake rupture zones. Nature, 434(7034): 749-752. Wintsch R P, Christoffersen R, Kronenberg A K. 1995. Fluid-rock reaction weakening of fault zones. Journal of Geophysical Research: Solid Earth, 100(B7): 13021-13032. Yang X S, Chen J Y, Duan Q B, et al. 2014. Geochemical and petrophysical responses to fluid processes within seismogenic fault zone: Implications from mineralogical, petro-chemical and petrophysical data. Seismology and Geology (in Chinese), 36(3): 862-881. Yang X S, Yang Y, Chen J Y. 2014. Pressure dependence of density, porosity, compressional wave velocity of fault rocks from the ruptures of the 2008 Wenchuan earthquake, China. Tectonophysics, 619-620: 133-142. Yang Y, Chen J Y, Yang X S. 2014. Experimental studies on relationship between P-wave velocity and porosity of fault rocks from the rupture of the 2008 Wenchuan earthquake. Chinese Journal of Geophysics (in Chinese), 57(6): 1883-1890, doi: 10.6038/cjg20140619. Yang Y, Yang X S, Duan Q B. 2015. Numerical simulation of temporal-spatial distribution of pore-fluid pressure induced by Zipingpu reservoir impoundment. Seismology and Geology (in Chinese), 37(2): 510-523. Zhang P Z, Wen X Z, Shen Z K, et al. 2010. Oblique, high-angle, listric-reverse faulting and associated development of strain: The Wenchuan earthquake of May 12, 2008, Sichuan, China. Annual Review of Earth and Planetary Sciences, 38(1): 353-382. Zhao Z Y, Wang Y, Liu X H. 1990. Fractal analysis applied to cataclastic rocks. Tectonophysics, 178(2-4): 373-377. 附中文参考文献 陈建业, 杨晓松, 党嘉祥等. 2011. 汶川地震断层带结构及渗透率. 地球物理学报, 54(7): 1805-1816, doi:0.3969/j.issn.0001-5733.2011.07.014. 陈建业, 杨晓松. 2014. 汶川地震断裂带粒度分布特征: 对地震碎裂机制的约束. 地震地质, 36(2): 368-379. 段庆宝. 2015. 地震断层带流体作用的岩石物理和地球化学响应: 以龙门山断裂花岗质破裂带为例. 中国地震局地质研究所. 杨彧, 陈进宇, 杨晓松. 2014. 汶川地震破裂带断层岩纵波速度与孔隙度关系的实验研究. 地球物理学报, 57(6): 1883-1890, doi: 10.6038/cjg20140619. 杨彧, 杨晓松, 段庆宝. 2015. 水库蓄水与断层带流体孔隙压时-空分布的数值模拟——以紫坪铺水库为例. 地震地质, 37(2): 510-523. 杨晓松, 陈建业, 段庆宝等. 2014. 地震断层带流体作用的岩石化学-物理响应——来自矿物学、岩石化学、岩石物理学的启示. 地震地质, 36(3): 862-881.