WANG ZhiQiang,
HAN LiGuo
.2018.Full-waveform inversion with a vertical total variation constraint based on the Hinge loss function.Chinese Journal Of Geophysics,61(4): 1460-1470,doi: 10.6038/cjg2018L0630
基于Hinge损失函数的垂向全变差约束全波形反演
王志强, 韩立国
吉林大学地球探测科学与技术学院, 长春 130026
Full-waveform inversion with a vertical total variation constraint based on the Hinge loss function
WANG ZhiQiang, HAN LiGuo
College of Geo-exploration Sciences and Technology, Jilin University, Changchun 130026, China
Abstract:Full waveform inversion can provide a high-precision velocity model for pre-stack depth migration imaging. However, this method has a non-linearity and dependence on the initial velocity model. Especially under the complex conditions of highly variable geology and discontinuous velocity changes, the degree of its nonlinearity increases, leading to an inversion trap in a local minima, lowering the accuracy of inversion.#br#The total variation regularization method, a kind of unsmooth constraints which is widely used in image denoising, can preserve discontinuity interfaces and edges of the image during the denoising. In this paper we propose a full waveform inversion using the vertical total variation constraint based on the hinge loss function. By virtue of this constraint, we use the hinge loss function to control the model's updating direction, and get the iteration format of the optimization problem with the primal-dual hybrid gradient algorithm. This method improves the reconstruction accuracy of underground discontinuous interfaces effectively, and reduces the degree of dependence on the initial velocity model.#br#Numerical examples demonstrate that this new full waveform inversion method is effective. Compared with the conventional full waveform inversion method, it can reconstruct the discontinuous interface effectively based on total variation constraint. Especially the reconstructing effect of the high-speed body edge is more obvious. Although the dependence of the initial velocity model of this method remains strong, It can reduce the degree of dependence on the initial velocity model and get a same accurate velocity model from a poor initial model eventually by means of cyclic iteration. In particular the high-speed body edge and discontinuous interfaces can be reconstructed accurately.
Anagaw A Y. 2009. Total variation and adjoint state methods for seismic wavefield imaging. Edmonton, Alberta:University of Alberta. Anagaw A Y, Sacchi M D. 2012. Edge-preserving seismic imaging using the total variation method. Journal of Geophysics and Engineering, 9(2):138-146. Bertsekas D P. 1999. Nonlinear Programming. 2nd ed. Belmont:Athena Scientific. Bonettini S, Zanella R, Zanni L. 2009. A scaled gradient projection method for constrained image deblurring. Inverse Problems, 25(1):015002. Chung E T, Chan T F, Tai X C. 2005. Electrical impedance tomography using level set representation and total variational regularization. Journal of Computational Physics, 205(1):357-372. Esser E, Guasch L, van Leeuwen T, et al. 2015. Automatic salt delineation-Wavefield Reconstruction Inversion with convex constraints.//SEG Technical Program Expanded Abstracts. New Orleans, Louisiana:SEG, 1337-1343. Esser E, Zhang X Q, Chan T F. 2010. A general framework for a class of first order primal-dual algorithms for convex optimization in imaging science. SIAM Journal on Imaging Sciences, 3(4):1015-1046. Fei T W, Luo Y, Qin F H, et al. 2012. Full waveform inversion without low frequencies:A synthetic study.//2012 SEG Annual Meeting. Las Vegas, Nevada:SEG, 4609-4613. Han M. 2014. Methods and application of full waveform inversion for abyssal seismic data (in Chinese). Changchun:Jilin University. Han M, Han L G, Liu C C, et al. 2013. Frequency-domain auto-adapting full waveform inversion with blended source and frequency-group encoding. Applied Geophysics, 10(1):41-52. Herrmann F J, van Leeuwen T. 2014. A penalty method for PDE-constrained optimization:WIPO, WO/2014/172787. 2014-10-30. Hu Y, Han L G, Xu Z, et al. 2017. Demodulation envelope multi-scale full waveform inversion based on precise seismic source function. Chinese J. Geophys. (in Chinese), 60(3):1088-1105, doi:10.6038/cjg20170321. Krebs J R, Anderson J E, Hinkley D, et al. 2009. Fast full-wavefield seismic inversion using encoded sources. Geophysics, 74(6):WCC105. Lailly P. 1983. The seismic inverse problem as a sequence of before stack migrations.//Proceedings of the Conference on Inverse Scattering, Theory and Application. Philadelphia:Society for Industrial and Applied Mathematics, 206-220. Li X, Aravkin A Y, van Leeuwen T, et al. 2012. Fast randomized full-waveform inversion with compressive sensing. Geophysics, 77(3):A13-A17. Lu X T, Han L G, Zhang P, et al. 2015. Direct migration method of multi-source blended data based on total variation. Chinese J. Geophys. (in Chinese), 58(9):3335-3345, doi:10.6038/cjg20150926. Pratt R G. 1999. Seismic waveform inversion in the frequency domain, Part 1:Theory and verification in a physical scale model. Geophysics, 64(3):888-901. Pratt R G, Shipp R M. 1999. Seismic waveform inversion in the frequency domain, Part 2:Fault delineation in sediments using crosshole data. Geophysics, 64(3):902-914. Qu Y, Cao J X, Zhu H D, et al. 2011. An improved total variation technique for seismic image denoising. Acta Petrolei Sinica (in Chinese), 32(5):815-819. Rudin L I, Osher S, Fatemi E. 1992. Nonlinear total variation based noise removal algorithms. Physica D, 60(1-4):259-268. Shin C, Cha Y H. 2008. Waveform inversion in the Laplace domain. Geophysical Journal International, 173(3):922-931. Shin C, Cha Y H. 2009. Waveform inversion in the Laplace-Fourier domain. Geophysical Journal International, 177(3):1067-1079. Tarantola A. 1984. Inversion of seismic reflection data in the acoustic approximation. Geophysics, 49(8):1259-1266. van Leeuwen T, Herrmann F J. 2013. Mitigating local minima in full-waveform inversion by expanding the search space. Geophysical Journal International, 195(1):661-667. Wang Y H, Rao Y. 2009. Reflection seismic waveform tomography. Journal of Geophysical Research:Solid Earth, 114(B3):B03304. Zhang X Y, Burger M, Osher S. 2011. A unified primal-dual algorithm framework based on bregman iteration. Journal of Scientific Computing, 46(1):20-46. Zhu M Q, Chan T. 2008. An efficient primal-dual hybrid gradient algorithm for total variation image restoration. CAM Report 08-34. 1-29. 韩淼. 2014. 深水区地震全波形反演策略与应用. 长春:吉林大学. 胡勇, 韩立国, 许卓等. 2017. 基于精确震源函数的解调包络多尺度全波形反演. 地球物理学报, 60(3):1088-1105, doi:10.6038/cjg20170321. 卢昕婷, 韩立国, 张盼等. 2015. 基于全变分原理的多震源混合数据直接偏移方法. 地球物理学报, 58(9):3335-3345, doi:10.6038/cjg20150926. 屈勇, 曹俊兴, 朱海东等. 2011. 一种改进的全变分地震图像去噪技术. 石油学报, 32(5):815-819.