FENG Yan,
JIANG Yong,
SUN Han et al
.2018.The three-dimensional surface Spline model of geomagnetic field.Chinese Journal Of Geophysics,61(4): 1352-1365,doi: 10.6038/cjg2018K0217
The three-dimensional surface Spline model of geomagnetic field
FENG Yan1,2, JIANG Yong1, SUN Han3, AN ZhenChang4, HUANG Ya2
1. Institute of Space Weather, Nanjing University of Information Science and Technology, Nanjing 210044, China; 2. State Key Laboratory of Space Weather, Chinese Academy of Sciences, Beijing 100190, China; 3. Xintianyuan Institute of Disaster Prevention and Reduction, Inner Mongolia, Hohhot 010051, China; 4. Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
Abstract:Based on 149 surface observations and 50 CHAMP measuring data, along with newest 12 Chinese Meridian Project observations, as well as the 50 points of IGRF12 that lie in the level of 180 km, we created the three-dimensional Surface Spline (3D Spline) model of Chinese mainland for the first time. The boundary effect was controlled by 39 complimentary points. All data were removed the different field sources by CM4 model, so the created 3D Spline model expresses the regional main field. We have analyzed and compared the modeling values with that of Surface Spline (2D Spline), Taylor polynomial (2D Taylor), three-dimensional Taylor polynomial (3D Taylor) models and IGRF12. Results show the overall trends of elements X,Y,Z and F among these models are basically consistent, but the isolines of 3D Spline are relatively more tortuous. Moreover, the intensity of Y decreases while altitude increases. Through comparing the modeling values, residuals and Root-Mean-Square-Errors (RMSE) of 6 intentional missing points between 3D Spline, 2D and 3D Taylor models, results imply the former is better than others. RMSEs of Y,Z and F of 3D Spline are over 50% less than that of other models. The modeling precision of 3D Spline model at different altitudes largely depends upon the number and precision of measuring points at adjacent altitudes.
Alldredge L R. 1981. Rectangular harmonic analysis applied to the geomagnetic field. J. Geophys. Res., 86(B4):3021-3026. An Z C, Xu Y F. 1981. Methods of computation of geomagnetic field at greater altitude in a local region. Chin. J. Space Sci. (in Chinese), 1(1):68-73. An Z C, Xu Y F, Xai G H, et al. 1982. Mathematical method to express the distribution of geomagnetic field and its secular variation in a local area. Chinese J. Geophys. (Acta Geophysica Sinica) (in Chinese), 25(Suppl.):711-717. Chen B, Ni Z, Xu R G, et al. 2016. The geomagnetic field in China and neighboring regions for the 2010.0 epoch. Chinese J. Geophys. (in Chinese), 59(4):1446-1456, doi:10.6038/cjg20160425. Feng Y, An Z C, Sun H, et al. 2010a. A study on model of geomagnetic normal field of China Region. Advances in Earth Science (in Chinese), 25(7):723-729. Feng Y, Pan J J, An Z C, et al. 2010b. Calculation and analysis of geomagnetic field horizontal gradients in China. Chinese J. Geophys. (in Chinese), 53(12):2899-2906. Feng Y, Sun H, Mao F, et al. 2013. Study on crustal magnetic anomaly over Mexico and its adjacent areas. Progress in Geophys. (in Chinese), 28(3):1355-1364, doi:10.6038/pg20130329. Feng Y, Sun H, Jiang Y. 2015. Data fitting and modeling of regional geomagnetic field. Applied Geophysics, 12(3):303-316, doi:10.1007/s11770-015-0500-6. Feng Y, Jiang Y, Jiang Y, et al. 2016. Regional magnetic anomaly fields:3D Taylor polynomial and surface spline models. Applied Geophysics, 13(1):59-68, doi:10.1007/s11770-016-0533-5. Finlay C C, Olsen N, Tøffner-Clausen L. 2015. DTU candidate field models for IGRF-12 and the CHAOS-5 geomagnetic field model. Earth, Planets and Space, 67:114, doi:10.1186/s40623-015-0274-3. Flechtner F M, Gruber T, Güntner A, et al. 2010. System Earth via Geodetic-Geophysical Space Techniques. Heidelberg, Berlin:Springer-Verlag. Gao J T, An Z C, Gu Z W, et al. 2006. Distribution of the geomagnetic field and its secular variations expressed by the surface Spline method in China (a part) for 1900-1936. Chinese J. Geophys. (in Chinese), 49(2):398-407. Haines G V. 1985. Spherical cap harmonic analysis. J. Geophys. Res., 90(B3):2583-2592. Jiang Y, Jiang Y, Feng Y, et al. 2015. Regional geomagnetic modelling based on the magnetic data of CHAMP satellite and 3D Taylor polynomial. Chinese J. Geophys. (in Chinese), 58 (9):3121-3132, doi:10.6038/cjg20150909. Le Mouel J. 1969. Sur la distribution des elements magnetiques en France[Ph. D. thesis]. University de Paris. Liu S J, Zhou X G, Sun H, et al. 2011. The three dimension Taylor polynomial method for the calculation of regional geomagnetic field model. Progress in Geophys. (in Chinese), 26(4):1165-1174, doi:10.3969/j.issn.1004-2903.2011.04.005. Olsen N, Hulot G, Lesur V, et al. 2015. The Swarm Initial Field Model for the 2014 geomagnetic field. Geophys. Res. Lett., 42(4):1092-1098, doi:10.1002/2014GL062659. Sabaka T J, Olsen N, Langel R A. 2002. A comprehensive model of the quiet-time, near-Earth magnetic field:phase 3. Geophys. J. Int., 151(1):32-68. Sabaka T J, Olsen N, Purucker M E. 2004. Extending comprehensive models of the Earth's magnetic field with Ørsted and CHAMP data. Geophys. J. Int., 159(2):521-547. Sabaka T J, Olsen N, Tyler R H, et al. 2015. CM5, a pre-Swarm comprehensive geomagnetic field model derived from over 12 yr of CHAMP, Ørsted, SAC-C and observatory data. Geophys. J. Int., 200(3):1596-1626. Thébault E, Finlay C C, Beggan C D, et al. 2015. International Geomagnetic Reference Field:the 12th generation. Earth, Planets and Space, 67:79, doi:10.1186/s40623-015-0228-9. Wang C. 2010. New chains of space weather monitoring stations in China. Space Weather, 8(8), doi:10.1029/2010SW000603. Xu W Y. 2009. Physics of Electromagnetic Phenomena of the Earth (in Chinese). Hefei:University of Science and Technology of China Press. 安振昌, 徐元芳. 1981. 局部地区高空磁场的计算方法. 空间科学学报, 1(1):68-73. 安振昌, 徐元芳, 夏国辉等. 1982. 表示局部地区地磁场及其长期变化分布的数学方法. 地球物理学报, 12(增):711-717. 陈斌, 倪喆, 徐如刚等. 2016. 2010.0年中国及邻近地区地磁场. 地球物理学报, 59(4):1446-1456, doi:10.6038/cjg20160425. 冯彦, 安振昌, 孙涵等. 2010a. 中国地区地磁正常场模型研究. 地球科学进展, 25(7):723-729. 冯彦, 潘剑君, 安振昌等. 2010b. 中国地区地磁场水平梯度的计算与分析. 地球物理学报, 53(12):2899-2906. 冯彦, 孙涵, 毛飞等. 2013. 墨西哥及邻近地区地壳磁异常场研究. 地球物理学进展, 28(3):1355-1364, doi:10.6038/pg20130329. 高金田, 安振昌, 顾左文等. 2006. 用曲面Spline方法表示1900-1936年中国(部分地区)地磁场及其长期变化的分布. 地球物理学报, 49(2):398-407. 蒋勇, 姜乙, 冯彦等. 2015. 基于CHAMP卫星与三维Taylor多项式模型的区域地磁建模研究. 地球物理学报, 58(9):3121-3132, doi:10.6038/cjg20150909. 柳士俊, 周小刚, 孙涵等. 2011. 用于区域地磁场模型计算的三维Taylor多项式方法. 地球物理学进展, 26(4):1165-1174, doi:10.3969/j.issn.1004-2903.2011.04.005. 徐文耀. 2009. 地球电磁现象物理学. 合肥:中国科学技术大学出版社.