BAI Fan,
CHEN ZuAn,
BAI WuMing
.2018.Numerical simulation on the melting process of the mantle plume-lithosphere interaction.Chinese Journal Of Geophysics,61(4): 1341-1351,doi: 10.6038/cjg2018L0170
Numerical simulation on the melting process of the mantle plume-lithosphere interaction
BAI Fan1,2, CHEN ZuAn1, BAI WuMing1
1. Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China
Abstract:The mantle plume is the most likely cause for the formation of Large Igneous Provinces (LIPs), and its interaction with the lithosphere can affect the tectonic evolution of the crust and upper mantle. This study focuses on the melting process of mantle plume-lithosphere interaction. On the basis of mass, momentum and energy conservation equations, and material's rheological relation, as well as different melt depletions, using the open-source finite-element code "Ellipsis3D", we firstly perform numerical simulation in the melting process of plume-lithosphere interactions. The results show that there are three stages of this process. At the first stage, the mantle plume melts itself mainly through decompression melting. At the second stage, the mantle plume mostly interacts with the lithosphere in Z direction. In this stage, mantle lithosphere begins to melt because of temperature rising and mantle plume keeps on decompression melting. At the last stage, the mantle plume begins to move horizontally along X direction. As a result of temperature rising, the melting range of the mantle lithosphere increases gradually along with the plume spreading. At the same time, the melting degree of the plume itself decreases because of heat transfer. Then such simulation is made to the Emeishan Large Igneous Province (ELIP), and the results are largely in accordance with previous work. Finally, this paper discusses the formation and evolution of the ELIP based on this numerical simulation and data from field investigations.
Burov E, Poliakov A. 2001. Erosion and rheology controls on synrift and postrift evolution:verifying old and new ideas using a fully coupled numerical mode. Journal of Geophysical Research, 106(B8):16461-16481. Burov E, Guillou-Frottier L. 2005. The plume head-continental lithosphere interaction using a tectonically realistic formulation for the lithosphere. Geophysical Journal International, 161(2):469-490. Burov E, Guillou-Frottier L. 2007. Plume head-lithosphere interactions near intra-continental plate boundaries. Tectonophysics, 434(1-4):15-38. Campbell I H, Griffiths R W. 1990. Implications of mantle plume structure for the evolution of flood basalts. Earth and Planetary Science Letters, 99(1-2):79-93. Coffin M F, Eldholm O. 1994. Large igneous provinces:Crustal structure, dimensions, and external consequences. Reviews of Geophysics, 32(1):1-36. Christensen U,Harder H.1991. 3D convection with variable viscosity. Geophysical Journal International, 104(1):213-226. d'Acremont E, Leroy S, Burov E B. 2003. Numerical modelling of a mantle plume:The plume head-lithosphere interaction in the formation of an oceanic large igneous province. Earth and Planetary Science Letters, 206(3-4):379-396. Farnetani C G, Richards M A. 1994. Numerical investigations of the mantle plume initiation model for flood basalt events. Journal of Geophysical Research:Solid Earth, 99(B7):13813-13833. Gasparik T. 1990. Phase relations in the transition zone. Journal of Geophysical Research, 95(B10):15751-15769. Griffiths R W, Campbell I H. 1990. Stirring and structure in mantle starting plumes. Earth and Planetary Science Letters, 99(1-2):66-78. He B, Xu Y G, Xiao L et al. 2003. Generation and spatial distribution of the Emeishan large igneous province:New evidence from stratigraphic records. Acta Geologica Sinica (in Chinese), 77(2):194-202. Huang J Q, Ren J S, Jiang C F. 1977. An outline of the Tectonic chacarteristics of China. Acta Geologica Sinica (in Chinese), 51(2):117-135. Kellogg L H, King S D. 1997. The effect of temperature dependent viscosity on the structure of new plumes in the mantle:Results of a finite element model in a spherical, axisymmetric shell. Earth and Planetary Science Letters, 148(1):13-26. Kirby S H. 1983. Rheology of the lithosphere. Reviews of Geophysics, 21(6):1458-1487. Lavelle J W. 1997. Buoyancy-driven plumes in rotating, stratified cross flows:Plume dependence on rotation, turbulent mixing, and cross-flow strength. Journal of Geophysical Research:Oceans, 102(C2):3405-3420. Leng W, Gurnis M. 2012. Shape of thermal plumes in a compressible mantle with depth-dependent viscosity. Geophysical Research Letters, 39(5):L05310. Li H B, Zhang Z C, Lu L S et al. 2010. Geometry of the mafic dykes warms in Emeishan large igneous province:Implications for mantle plume. Acta Petrologica Sinica (in Chinese), 26(10):3143-3152. Li J K, Wang D H.2004. A preliminary research on the numerical simulation of the emeiMantle plume. Acta Geoscientica Sinica (in Chinese), 25(5):509-514. Li J K, Wang D H.2005. Advances in the numerical simulation of the mantle plume. Geological Science and Technology Information (in Chinese), 24(4):13-20. Lu J R.1996. Dynamical characteristics of the Emei mantle plume. Acta Geoscientica Sinica (in Chinese), 17(4):424-438. Manglik A, Christensen U R. 1997. Effect of mantle depletion buoyancy on plume flow and melting beneath a stationary plate. Journal of Geophysical Research:Solid Earth, 102(B3):5019-5028. McKenzie D, Bickle M J. 1988. The volume and composition of melt generatted by extension of the lithosphere. Journal of Petrology, 29(3):625-679. Meng W J, Chen Z A, Bai W M. 2015. Numerical simulation on process of the plume-lithosphere interaction. Chinese Journal of Geophysics (in Chinese), 58(2):495-503. Moresi L, Dufour F, Mühlhaus H Bet al. 2003. A lagrangian integration point finite element method for large deformation modeling of viscoelastic geomaterials. Journal of Computational Physics, 184(2):476-497. Morgan W J. 1971. Convection plumes in the lower mantle. Nature, 230(5288):42-43. Morgan W J. 1981. Hotspot tracks and the opening of the Atlantic and Indian Oceans. The Sea,ideas and observations on progress in the study of the seas, 7:443-487. O'Neill C, Moresi L, Müller D, et al. 2006. Ellipsis 3D:A particle-in-cell finite-element hybrid code for modelling mantle convection and lithospheric deformation. Computers & Geosciences, 32(10):1769-1779. Ohtani E, Kato T, Sawamoto H. 1986. Melting of a model chondritic mantle to 20 GPa. Nature, 322:352-353. Ranalli G. 1995. Rheology of the Earth, 2nd edition, Chapman and Hall, London, p.413. Richards M A, Duncan R A, Courtillot V E. 1989. Flood basalts and hot-spot tracks:Plume heads and tails. Science, 246(4926):103-107. Song X Y, Hou Z Q, Wang Y L.2002 The mantle plume features of Emeishan basalts.Journal of Mineralogy and Petrology (in Chinese), 22(4):27-32. Sun Y J, Dong S W, Fan T Y. 2013. 3D rheological structure of the continental lithosphere beneath China and adjacent regions. Chinese Journal of Geophysics, 56(9):2936-2946. Takahashi E, Kushiro I. 1983. Melting of a dry peridotite at high pressures and basalt magma genesis. American Mineralogist, 68(9-10):859-879. Thompson G M, Ali J R, Song X Y, et al. 2001. Emeishan basalts, SW China:Reappraisal of the formation's type area stratigraphy and a discussion of its significance as a large igneous province. Journal of the Geological Society, 158(4):593-599. Turcotte D L, Schubert G. 2002. Geodynamics, applications of Continuum Physics to Geological Problems, 2nd edition, Cambridge University Press, Cambridge. Weertman J. 1970. The creep strength of the Earth's mantle. Reviews of Geophysics, 8(1):145-168. Wignall P B. 2001. Large igneous provinces and mass extinctions. Earth-Science Reviews, 53(1-2):1-33. Wilson J T. 1963. A possible origin of the Hawaiian Islands. Canadian Journal of Physics, 41(6):863-870. Xu Y G. 2002. Mantle plumes, large igneous provinces and their geologic consequences. Earth Science Frontiers (in Chinese), 9(4):341-353. Zhang B R. 2001. Magmatic activities from plume-source in the Qinling orogenic belt and its dynamic significance. Earth Science Frontiers (in Chinese), 8(3):57-66. 何斌, 徐义刚, 肖龙等. 2003. 峨眉山大火成岩省的形成机制及空间分布:来自沉积地层学的新证据. 地质学报, 77(2):194-202. 黄汲清, 任纪舜, 姜春发等. 1977. 中国大地构造基本轮廓. 地质学报, 51(2):117-135. 李宏博, 张招崇, 吕林素. 2010. 峨眉山大火成岩省基性墙群几何学研究及对地幔柱中心的指示意义. 岩石学报, 26(10):3143-3152. 李建康, 王登红. 2004. 峨眉地幔柱动力学数值模拟的初步研究. 地球学报, 25(5):509-514. 李建康, 王登红. 2005. 地幔柱数值模拟研究进展. 地质科技情报, 24(4):13-20. 卢记仁. 1996. 峨眉地幔柱的动力学特征. 地球学报, 17(4):424-438. 蒙伟娟, 陈祖安, 白武明. 2015. 地幔柱与岩石圈相互作用过程的数值模拟. 地球物理学报, 58(2):495-503, doi:10.6038/cjg20150213. 宋谢炎, 侯增谦, 汪云亮等. 2002. 峨眉山玄武岩的地幔热柱成因. 矿物岩石, 22(4):27-32. 孙玉军,董树文,范桃园. 2013. 中国大陆及邻区岩石圈三维流变结构. 地球物理学报. 56(9):2936-2946. 徐义刚. 2002. 地幔柱构造、大火成岩省及其地质效应. 地学前缘,9(4):341-353. 张本仁. 2001. 秦岭地幔柱源岩浆活动及其动力学意义. 地学前缘, 8(3):57-66.