ZHANG JinBo,
YANG DingHui,
HE XiJun et al
.2018.Discontinuous Galerkin method for solving wave equations in two-phase and viscoelastic media.Chinese Journal Of Geophysics,61(3): 926-937,doi: 10.6038/cjg2018L0095
Discontinuous Galerkin method for solving wave equations in two-phase and viscoelastic media
ZHANG JinBo1, YANG DingHui1, HE XiJun2, MA Xiao3
1. Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China; 2. Department of Mathematics, Colledge of Information Science and Technology, Hainan University, Haikou, 570228, China; 3. Department of Applied Mathematics, Northwestern Polytechnical University, Xi'an 710072, China
Abstract:The Discontinuous Galerkin (DG) method has great advantages in suppressing numerical dispersion and dealing with complex structures. Therefore, in this paper, we apply a new DG method to numerical simulations in two-phase and viscoelastic media, and suggest a DG method to solve both Biot elastic wave equations and the D'Alembert wave equations. For this, we first transform the Biot equations and the D'Alembert wave equations into a system of first-order equations with respect to time-space by introducing auxiliary variables. Then we transform the first-order equations into a semi-discrete ordinary differential equation (ODE) system using the DG method. Finally, we use a weighted Runge-Kutta method to solve the ODE system. The numerical results show that the DG method works very well for solving the Biot elastic wave equations and D'Alembert wave equations, and can effectively suppress the numerical dispersion and provide accurate information on the wave-field.
Biot M A. 1956. Theory of propagation of elastic waves in a fluid-saturated porous solid, I Low frequency range. The Journal of the Acoustical Society of America, 28(2):168-178. Biot M A. 1962. Mechanics of deformation and acoustic propagation in porous media. Journal of Applied Physics, 33(4):1482-1498. Carcione J M, Kosloff D, Kosloff R. 1988. Viscoacoustic wave propagation simulation in the earth. Geophysics, 53(6):769-777. Carcione J M. 1993. Seismic modeling in viscoelastic media. Geophysics, 58(1):110-120. Cockburn B, Shu C W. 1989. TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws Ⅱ:General framework. Mathematics of Computation, 52(186):411-435. Cockburn B, Shu C W. 2001. Runge-kutta discontinuous galerkin methods for convection-dominated problems. Journal of Scientific Computing, 16(3):173-261. de la Puente J, Dumbser M, Käser M, et al. 2008. Discontinuous galerkin methods for wave propagation in poroelastic media. Geophysics, 73(5):T77-T97. Dong G L, Li P M. 2004. Dispersive problem in seismic wave propagation numerical modeling. Natural Gas Industry (in Chinese), 24(6):53-56. Dvorkin J, Nur A. 1993. Dynamic poroelasticity:A unified model with the squirt and the Biot mechanisms. Geophysics, 58(4):524-533. Dupuy B, De Barros L, Garambois S, et al. 2011. Wave propagation in heterogeneous porous media formulated in the frequency-space domain using a discontinuous Galerkin method. Geophysics, 76(4):N13. Gassmann F. 1951. Elastic waves through a packing of spheres. Geophysics, 16(4):673-685. He X J, Yang D H, Wu H. 2015. A weighted Runge-Kutta discontinuous Galerkin method for wavefield modeling. Geophysical Journal International, 200(3):1389-1410. He X J. 2015. Discontinuous Galerkin method for solving wave equations[Ph.D.thesie] (in Chinese). Beijing:Tsinghua University. Käser M, Dumbser M, De La Puente J, et al. 2007. An arbitrary high-order Discontinuous Galerkin method for elastic waves on unstructured meshes-Ⅲ. Viscoelastic attenuation. Geophysical Journal International, 168(1):224-242. Kelly K R, Ward R W, Treitel S, et al. Synthetic seismograms; a finite-difference approach. Geophysics, 1976, 41:2-27. Li W H, Liu Q H, Zhao C G. 2010. Three-dimensional viscous-spring boundaries in domain and dynamic analysis using explicit finite element method of saturated porous medium. Chinese journal of Geophysics (in Chinese), 53(10):2460-2469, doi:10.3969/j.issn.0001-5733.2010.10.020. Ma Y W, Zhan Z B, Gu H M. 2001. Numerical modeling for seismic wave propagation via pseudo spectral method. Geophysical Prospecting for Petroleum (in Chinese), 40(2):42-48. Mou Y G, Pei Z L. 2005. Seismic Numerical Simulation in Three-dimensional Complex Media (in Chinese). Beijing:Petroleum Industry Press. Niu B H, Sun C Y. 2004. Developing theory of propagation of seismic waves-medium model and propagation of seismic waves. Progress in Geophysics (in Chinese), 19(2):255-263. Niu B H, Sun C Y. 2007. Half-Space Homogeneous Isotropic (in Chinese). Beijing:Geological Publishing House. Parra J O. 1997. The transversely isotropic poroelastic wave equation including the Biot and the squirt mechanisms:theory and application. Geophysics, 62(1):309-318. Plona T J. 1980. Observation of a second bulk compressional wave in a porous medium at ultrasonic frequencies. Applied Physics Letters, 36(4):259-261. Reed W H, Hill T R. 1973. Triangular mesh methods for the Neutron transport equation. Los Alamos Report. LA-UR, 73-479. She D P. 2004. Wavefield numerical simulation technology. Progress in Exploration Geophysics, 27(1):16-21. Wang M X. 2012. Symplectic stereomodelling method for wave equations in two-phase and viscoelastic media and its numerical simulations[Master's thesis] (in Chinese). Beijing:Tsinghua University. Wang Z, He Q, Wang D. 2008. The numerical simulation for a 3D two-phase anisotropic medium based on BISQ model. Applied Geophysics, 5(1):24-34. Yang D H. 2002. Finite element method of the elastic wave equation and wavefield simulation in two-phase anisotropic media. Chinese Journal of Geophysics (in Chinese), 45(4):575-583. Yang D H, He X J, Ma X, et al. 2016. An optimal nearly analytic discrete-weighted Runge-Kutta discontinuous Galerkin hybrid method for acoustic wavefield modeling. Geophysics, 81(5):T251-T263. Yang D H, Peng J M, Lu M, et al. 2006. Optimal nearly-analytic discrete approximation to the scalar wave equation. Bulletin of the Seismological Society of America, 96(3):1114-1130. Yang D H, Song G J, Chen S, et al. 2007. An improved nearly analytical discrete method:an efficient tool to simulate the seismic response of 2-D porous structures. Journal of Geophysics and Engineering, 4(1):40-52. Yang D H, Teng J W, Zhang Z J, et al. 2003. A nearly analytic discrete method for acoustic and elastic wave equations in anisotropic media. Bulletin of the Seismological Society of America, 93(2):882-890. Yang K D, Yang D H, Wang S Q. 2002. Wave-fields simulation based on the biot-squirt equation. Chinese Journal of Geophysics (in Chinese), 45(6):853-861.Yang H Z Du Q Z. 2003. Finite-element methods for viscoelasticand azimuthally anisotropic media. Acta Physica Sinica (in Chinese), 52(8):2010-2014. Zheng H S, Zhang Z J, Liu E R. 2006. Non-linear seismic wave propagation in anisotropic media using the flux-corrected transport technique. Geophysical Journal International, 165(3):943-956. 董良国, 李培明. 2004. 地震波传播数值模拟中的频散问题. 天然气工业, 24(6):53-56. 贺茜君. 2015. 求解波动方程的间断有限元方法及其波场模拟[博士论文]. 北京:清华大学. 李伟华, 刘清华, 赵成刚. 2010. 饱和多孔介质三维时域黏弹性人工边界与动力反应分析的显式有限元法. 地球物理学报, 53(10):2460-2469, doi:10.3969/j.issn.0001-5733.2010.10.020. 马永旺, 詹正彬, 顾汉明. 2001. 伪谱法地震波传播数值模拟. 石油物探, 40(2):42-48. 牟永光, 裴正林. 2005. 三维复杂介质地震数值模拟. 北京:石油工业出版社. 牛滨华, 孙春岩. 2004. 地震波理论研究进展-介质模型与地震波传播. 地球物理学进展, 19(2):255-263. 牛滨华, 孙春岩. 2007. 半无限空间各向同性黏弹性介质与地震波传播. 北京:地质出版社. 佘德平. 2004.波场数值模拟技术. 油气藏评价与开发, 27(1):16-21. 王美霞. 2012. 双相及黏弹性介质中波传播方程的保辛算法及其波场模拟[硕士论文]. 北京:清华大学. 杨顶辉. 2002. 双相各向异性介质中弹性波方程的有限元解法及波场模拟. 地球物理学报, 45(4):575-583. 杨德宽, 杨顶辉, 王书强. 2002. 基于Biot-Squirt方程的波场模拟. 地球物理学报, 45(6):853-861. 杨慧珠, 杜启振. 2003. 方位各向异性黏弹性介质波场有限元模拟. 物理学报, 52(8):2010-2014.