MA Ni,
YIN XingYao,
SUN ChengYu et al
.2018.Inversion for crustal stress based on azimuthal seismic data.Chinese Journal Of Geophysics,61(2): 697-706,doi: 10.6038/cjg2018L0183
Inversion for crustal stress based on azimuthal seismic data
MA Ni1,2, YIN XingYao1,2, SUN ChengYu1,2, ZONG ZhaoYun1,2
1. School of Geosciences, China University of Petroleum, Qingdao 266580, China; 2. Laboratory for Marine Mineral Resources, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
Abstract:During exploration and production stages of shale oil and gas, hydraulic fracturing is required to be made on the reservoirs to form cracks which are favorable for hydrocarbon accumulation and migration. As one of the important parameters for hydraulic fracturing, crustal stress can determine the size, orientation and distribution of cracks as well as influence the fracturing stimulation. The differential ratio of the maximum and minimum horizontal stresses (i.e., orthorhombic differential horizontal stress ratio, ODHSR) is an important factor to evaluate whether the area will have a greater tendency to fracture into a network. In this paper, we present the method of estimating stress based on azimuthal pre-stack seismic data, which is used to guide hydraulic fracturing. Firstly, the elastic and anisotropic parameters of the formation are obtained from inversion of azimuthal pre-stack seismic data. Secondly, based on the approximation formula of ODHSR, we estimate the ODHSR using the inverted elastic and anisotropic parameters of the formation. Finally, pre-stack seismic data of a work area is utilized to validate the application of the proposed stress prediction method. The practical test shows that the method can efficiently help identify the areas that are easy to create crack networks.
Amadei B, Stephansson O. 1997. Rock Stress and Its Measurement. London:Chapman & Hall. Biot M A, Willis D G. 1957. The elastic coefficients of the theory of consolidation. Journal Applied Mechanics, 24:594-601. 图8 ODHSR的层切片 Fig.8 Horizontal slicer of ODHSR Bourgoyne A T, Millheim K K, Chenevert M E, et al. 1986. Applied Drilling Engineering. Richardson, Texas:Society of Petroleum Engineers. Chen T S, Wei X C, Liu Y. 2006. New approximation formula for calculation of elastic Impedance in anisotropic media. Geophysical Prospecting for Petroleum (in Chinese), 45(6):563-569. Cleary M P. 1993. Mechanics,Modeling,and Implementation of Hydraulic Fracturing Using the GRI FRACPRO System. Short Course Notes. Houston, Texas. Connolly P. 1999. Elastic impedance. The Leading Edge, 18(4):438-452. Cornet F H, Valette B. 1984. In situ stress determination from hydraulic injection test data. Journal of Geophysical Research:Solid Earth, 89(B13):11527-11537. Cornet F H. 1986. Stress determination from hydraulic tests on preexisting fractures-the H.T.P.F. method.//ISRM International Symposium. Stockholm, Sweden:International Society for Rock Mechanics and Rock Engineering, 301-312. Gies R M. 1987. An improved method for viewing micro pore systems in rocks with the polarizing microscope. SPE Formation Evaluation, 2(2):209-214. Gray F D, Schmidt D P, Delbecq F. 2010a. Optimize shale gas field development using stresses and rock strength derived from 3D seismic data.//80th Ann. Internat Mtg., Soc. Expi. Geophys. Expanded Abstracts. Gray F D, Anderson P F, Logel J, et al. 2010b. Estimating in-situ, anisotropic, principal stresses from 3D seismic.//72nd EAGE Conference and Exhibition Incorporating. SPZ, EAGE. Gray F D, Anderson P F, Logel J, et al. 2010c. Principle stress estimation in shale plays using 3D seismic. GeoCanada2010. Gray F D. 2011. Methods and systems for estimating stress using seismic data. United States Patent Application 20110182144. 2011-07-28. Gray F D, Anderson P F, Logel J, et al. 2012. Estimation of stress and geomechanical properties using 3D seismic data. First Break, 30(3):59-68. Haimson B C. 1968. Hydraulic fracturing in porous and nonporous rock and its potential for determining in situ stresses at great depth[Ph. D. thesis]. Minneapolis:University of Minnesota. Hast N. 1969. The state of stress in the upper part of the earth's crust. Tectonophysics, 8(3):169-211. Iverson W P. 1995. Closure Stress Calculations in Anisotropic Formations.//65th Ann. Internat Mtg., Soc. Expi. Geophys. Expanded Abstracts. Leeman E R. 1964. The measurement of stress in rocks. Journal of the South African Institute of Mining and Metallurgy, 65(2):45-114. Li Z M, Zhang J Z. 1997. In-Situ Stress and Petroleum Exploration & Development (in Chinese). Beijing:Petroleum Industry Press. Logan J M, Teufel L M. 1978. The prediction of massive hydraulic fracturing from analyses of oriented cores.//19th U. S. Symposium on Rock Mechanics. Reno, Nevada:American Rock Mechanics Association, 340-347. Ma N, Yin X Y, Sun X Y, et al. 2017. The in-situ stress seismic prediction method based on the theory of orthorhombic anisotropic media. Chinese Journal of Geophysics (in Chinese), 60(12):4766-4775, doi:10.6038/cjg20171218. Mathar J. 1934. Determination of initial stresses by measuring the deformation around drilled holes. Trans. ASME, 56:249-254. Matsuki K, Takeuchi K. 1993. Three-dimensional in situ stress determination by anelastic strain recovery of a rock core. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 30(7):1019-1022. Ruger A. 1996. Reflection coefficients and azimuthal AVO analysis in anisotropic media[Ph. D. thesis]. Colorado:Colorado School of Mines. Schoenberg M, Sayers C M. 1995. Seismic anisotropy of fractured rock. Geophysics, 60(1):204-211. Simmons G, Siegfried R W, Feves M L. 1974. Differential strain analysis:a new method for examining cracks in rocks. Journal of Geophysical Research, 79(29):4383-4385. Stephansson O. 1983a. Rock stress measurement by sleeve fracturing.//5th ISRM Congress. Melbourne, Australia:International Society for Rock Mechanics and Rock Engineering, F129-F137. Stephansson O. 1983b. Sleeve fracturing for rock stress measurements in boreholes. Proc. Int. Symp. Essais en Place, In Situ Testing, 2:571-578. Sugawara K, Kameoka Y, Saito T, et al. 1978. A study on core discing of rock. Journal of the Mining Institute of Japan, 94(1089):797-803. Teufel L W. 1983. Determination of in-situ stress from anelastic strain recovery measurements of oriented core.//53th Ann. Internat Mtg., Soc. Expi. Geophys. Expanded Abstracts, 421-430. Thomsen L. 1986. Weak elastic anisotropy. Geophysics, 51(10):1954-1966. Voight B. 1968. Determination of the virgin state of stress in the vicinity of a borehole from measurements of a partial anelastic strain tensor in drill cores. Felsmechanik und Ingenieurgeologi, 6(4):201-215. Warpinski N R, Teufel L W. 1989. In-situ stresses in low-permeability, nonmarine rocks. Journal of Petroleum Technology, 41(4):405-414. Whitcombe D N. 2002. Elastic impedance normalization. Geophysics, 67(1):60-62. Yin X Y, Cao D P, Wang B L, et al. 2014. Research progress of fluid discrimination with pre-stack seismic inversion. Oil Geophysical Prospecting (in Chinese), 49(1):22-34, 46. Yin X Y, Zong Z Y, Wu G C. 2015. Research on seismic fluid identification driven by rock physics. Science China Earth Sciences, 58(2):159-171. Yin X Y, Liu X X. 2016. Research status and progress of the seismic rock-physics modeling methods. Geophysical Prospecting for Petroleum (in Chinese), 55(3):309-325. Zang A, Stephansson O. 2010. Stress field of the earth's crust. Netherlands:Springer. Zoback M D. 2007. Reservoir geomechanics. New York:Cambridge University Press. Zong Z Y, Yin X Y, Wu G C. 2012. AVO inversion and poroelasticity with P-and S-wave moduli. Geophysics, 77(6):N17-N24. Zong Z Y, Yin X Y, Wu G C. 2012a. Fluid identification method based on compressional and shear modulus direct inversion. Chinese Journal of Geophysics (in Chinese), 55(1):284-292, doi:10.6038/j.issn.0001-5733.2012.01.028. Zong Z Y, Yin X Y, Zhang F, et al. 2012b. Reflection coefficient equation and pre-stack seismic inversion with Young's modulus and Poisson ratio. Chinese Journal of Geophysics (in Chinese), 55(11):3786-3794, doi:10.6038/j.issn.0001-5733.2012.11.025. Zong Z Y, Yin X Y, Wu G C. 2013. AVAZ inversion and stress evaluation in heterogeneous medium.//83th Ann. Internat Mtg., Soc. Expi. Geophys. Expanded Abstracts, 428-432. 陈胜天, 魏修成, 刘洋. 2006. 一种新的各向异性弹性阻抗近似公 式. 石油物探, 45(6):563-569. 李志明, 张金珠. 1997. 地应力与油气勘探开发. 北京:石油工业出版社. 马妮, 印兴耀, 孙成禹等. 2017. 基于正交各向异性介质理论的地应力地震预测方法. 地球物理学报, 60(12):4766-4775, doi:10.6038/cjg20171218. 印兴耀, 曹丹平, 王保丽等. 2014. 基于叠前地震反演的流体识别方法研究进展. 石油地球物理勘探, 49(1):22-34, 46. 印兴耀, 宗兆云, 吴国忱. 2015. 岩石物理驱动下地震流体识别研究. 中国科学:地球科学, 45(1):8-21. 印兴耀, 刘欣欣. 2016. 储层地震岩石物理建模研究现状与进展. 石油物探, 55(3):309-325. 宗兆云, 印兴耀, 吴国忱. 2012a. 基于叠前地震纵横波模量直接反演的流体检测方法. 地球物理学报, 55(1):284-292, doi:10.6038/j.issn.0001-5733.2012.01.028. 宗兆云, 印兴耀, 张峰等. 2012b. 杨氏模量和泊松比反射系数近似方程及叠前地震反演. 地球物理学报. 55(11):3786-3794, doi:10.6038/j.issn.0001-5733.2012.11.025.