WANG DiJin,
LIU ZiWei,
WEI Jin et al
.2018.Method to correct atmospheric pressure effects based on ensemble empirical mode decomposition.Chinese Journal Of Geophysics,61(2): 504-520,doi: 10.6038/cjg2018L0139
基于EEMD分解的气压改正方法研究
王迪晋, 刘子维, 韦进, 王伟, 聂兆生
中国地震局地震研究所(地震大地测量重点实验室), 武汉 430071
Method to correct atmospheric pressure effects based on ensemble empirical mode decomposition
WANG DiJin, LIU ZiWei, WEI Jin, WANG Wei, NIE ZhaoSheng
Key Laboratory of Earthquake Geodesy, Institute of Seismology, China Earthquake Administration, Wuhan 430071, China
Abstract:The precise determination of the frequency splitting of seismic normal modes below 1 mHz using Superconducting Gravimeter (SG) data is an effective way to improve 1D density models without any trade-off with elastic parameters, as they are directly linked to the 1D-density profile. In the frequency band below 1 mHz, local atmospheric pressure around the SG sites becomes a major error source with the frequency-dependent characteristics. Therefore, an elaborate atmospheric-pressure correction on the SG data is necessary to detect low-frequency free oscillations of the Earth. Based on the Ensemble Empirical Mode Decomposition (EEMD), we propose an atmospheric-pressure correction method with frequency-dependent characteristics. With this method, gravity and atmospheric pressure are decomposed into a set of Intrinsic Mode Functions (IMFs) which are located in the different frequency bands respectively, then the gravity-pressure admittances are calculated in different frequency bands by applying a regressive analysis between gravity and atmospheric pressure. Finally, the influence of atmospheric pressure on the SG observation is elaborately removed. Using this method, we carried out a high-resolution analysis of low-frequency seismic normal modes and discovered their frequency splitting below 1.5 mHz by SG data after a great earthquake. The results demonstrate that seismic normal modes obtained from the atmospheric-pressure correction method proposed in this paper have higher signal-to-noise ratio, the standard deviations of estimated eigen-frequencies are distinctly reduced and the singlets of the fundamental spheroidal modes 0S2 and 0S3 and the degree one spheroidal mode 1S2 have high estimated precisons. Some spheroidal-toroidal mode couplings are also clearly detected in the SG data. The high-resolution analysis of low-frequency seismic normal modes not only has verified the atmospheric-pressure correction method based on EEMD but also has demonstrated the superiority of applying the SG data to detecting low-frequency seismic normal modes.
Banka D, Crossley D. 1999. Noise levels of superconducting gravimeters at seismic frequencies. Geophys. J. Int.,139(1):87-97. Boy J P, Hinderer J, Gegout P. 1998. Global atmospheric loading and gravity. Phys. Earth. Planet. Int., 109(3-4):161-177. Buland R, Berger J, Gilbert F. 1979. Observations from the IDA network of attenuation and splitting during a recent earthquake. Nature, 277(5695):358-362. Chao B F, Gilbert F. 1980. Autoregressive estimation of complex eigenfrequencies in low frequency seismic spectra. Geophys. J. Int., 63(3):641-657. Courtier N, Ducarme B, Goodkind J, et al. 2000. Global superconducting gravimeter observations and the search for the translational modes of the inner core. Phys. Earth Planet. Int., 117(1-4):3-20. Crossley D, Hinderer J. 2008a. Report of GGP activities to commission 3, completing 10 years for the worldwide network of superconducting gravimeters.//International Association of Geodesy Symposia. Observing our Changing Earth. Berlin Heidelberg:Springer, 511-521. Crossley D, Hinderer J. 2008b. The contribution of GGP superconducting gravimeters to GGOS.//International Association of Geodesy Symposia. Observing our Changing Earth. Berlin Heidelberg:Springer, 841-852. Crossley D, Hinderer J, Casula G, et al. 1999. Network of superconducting gravimeters benefits a number of disciplines. EOS, 80(11):121-126. Crossley D J, Jensen O G, Hinderer J. 1995. Effective barometric admittance and gravity residuals. Phys. Earth Planet. Int., 90(3-4):221-241. Farrell W E. 1972. Deformation of the Earth by surface loads. Rev. Geophys., 10(3):761-797. Freybourger M, Hinderer J, Trampert J. 1997. Comparative study of superconducting gravimeters and broadband seismometers STS-1/Z in seismic and subseismic frequency bands. Phys. Earth Planet. Int., 101(3-4):203-217. Fu C Y, Chen Y T, Qi G Z. 1985. The Foundation of Geophysics (in Chinese). Beijing:Science Press. Goodkind J M. 1999. The superconducting gravimeter. Rev. Sci. Instrum., 70(11):4131-4152. Gu X, Jiang T X, Zhang W Q, et al. 2014. Anomalous signals before 2011 Tohoku-oki MW9.1 earthquake, detected by superconducting gravimeters and broadband seismometers. Geodesy and Geodynamics, 5(2):24-31. Hinderer J, Crossley D. 2000. Time variations in gravity and inferences on the Earth's structure and dynamics. Surv. Geophys., 21(1):1-45. Hinderer J, Crossley D. 2004. Scientific achievements from the first phase (1997-2003) of the Global Geodynamics Project using a worldwide network of superconducting gravimeters. J. Geodyn., 38(3-5):237-262. Hu X G. 2006. Wavelet analysis of temporal gravity variations[Ph. D. thesis] (in Chinese). Wuhan:Institute of Geodesy and Geophysics, Chinese Academy of Sciences. Hu X G, Liu L T, Hinderer J, et al. 2006. Wavelet filter analysis of atmospheric pressure effects in the long-period seismic mode band. Phys. Earth Planet. Int., 154(1):70-84. Huang N E, Shen Z, Long S R, et al. 1998. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. Roy. Soc. A,454(1971):903-995. Huang N E, Wu Z H. 2008. A review on Hilbert-Huang transform:method and its applications to geophysical studies. Reviews of Geophysics, 46(2):RG2006. Jiang Y, Liu Z W, Zhang M M, et al. 2016. Research on Background noise level of global superconducting gravimeter. Journal of Geodesy and Geodynamics (in Chinese), 36(8):689-693. Kay S M. 1988. Modern Spectral Estimation. Englewood Cliffs, NJ:Prentice-Hall, 453-455. Lei X E, Sun H P, Xu H Z, et al. 2007. The detection and discussion on the free oscillation of the Earth and its splitting excited by the great Sumatra earthquake. Science China Earth Science (in Chinese), 37(4):504-511. Neumeyer J. 1995. Frequency dependent atmospheric pressure correction on gravity variations by means of cross spectral analysis. Bull. Inf. Mar. Terr., 122:9212-9220. Ritzwoller M H, Lavely E M. 1995. Three-dimensional seismic models of the Earth's mantle. Rev. Geophys., 33(1):1-66. Rosat S, Hinderer J. 2011. Noise levels of superconducting Gravimeters:updated comparison and time stability. Bull. Seismol. Soc. Am.,101(3):1233-1241. Rosat S, Hinderer J, Crossley D, et al. 2003a. The search for the Slichter mode:Comparison of noise levels of superconducting gravimeters and investigation of a stacking method. Phys. Earth Planet. Int., 140(1-3):183-202. Rosat S, Hinderer J, Crossley D, et al. 2004. Performance of superconducting gravimeters from long-period seismology to tides. J. Geodyn., 38 (3-5):461-476. Rosat S, Hinderer J, Rivera L. 2003b. First observation of 2S1 and study of the splitting of the football mode 0S2 after the June 2001 Peru earthquake of magnitude 8. 4. Geophys. Res. Lett., 30(21):2111. Rosat S, Sato T, Imanishi Y, et al. 2005. High-resolution analysis of the gravest seismic normal modes after the 2004 MW=9 Sumatra earthquake using superconducting gravimeter data. Geophys. Res. Lett.,32:L13304. Roult G, Roch J, Clévédé E. 2010. Observation of split modes from the 26th December 2004 Sumatra-Andaman mega-event. Phys. Earth Planet. Int. 179(1-2):45-59. Shen W B, Luan W. 2015. Feasibility analysis of searching for the Slichter triplet in superconducting gravimeter records. Geodesy and Geodynamics, 6(5):307-315. Sun H P, Xu J Q, Li Q. 2006. Detail spectral structure of Earth's gravity field and its application. Progress in Geophysics (in Chinese), 21(2):345-352. Van Camp M. 1999. Measuring Seismic normal modes with the GWR C021 Superconducting gravimeter. Phys. Earth Planet. Int.,116(1-4):81-92. Warburton R J, Goodkind J M. 1977. The influence of barometric pressure variations on gravity. Geophys. J. Int., 48(3):281-292. Widmer-Schnidrig R. 2003. What can superconducting gravimeters contribute to normal mode seismology? Bull. Seismol. Soc. Am., 93(3):1370-1380. Wu Z H, Huang N E. 2009. Ensemble Empirical Mode Decomposition:a noise-assisted data analysis method. Advances in Adaptive Data Analysis, 1(1):1-41. Zürn W, Widmer R. 1995. On noise reduction in vertical seismic records below 2 mHz using local barometric pressure. Geophys. Res. Lett., 22(24):3537-3540. 傅承义, 陈运泰, 祁贵仲. 1985. 地球物理学基础. 北京:科学出版社. 胡小刚. 2006. 时变重力信号的小波分析[博士论文]. 武汉:中国科学院测量与地球物理研究所. 江颖, 刘子维, 张苗苗等. 2016. 超导重力仪背景噪声水平分析. 大地测量与地球动力学, 36(8):689-693. 雷湘鄂, 孙和平, 许厚泽等. 2007. 苏门达腊大地震激发的地球自由振荡及其谱线分裂的检测与讨论. 中国科学D辑:地球科学, 37(4):504-511. 孙和平, 徐建桥, 黎琼. 2006. 地球重力场的精细频谱结构及其应用. 地球物理学进展, 21(2):345-352.