YANG Yang,
HE JiShan,
LI DiQuan
.2018.A noise evaluation method for CSEM in the frequency domain based on wavelet transform and analytic envelope.Chinese Journal Of Geophysics,61(1): 344-357,doi: 10.6038/cjg2018L0298
A noise evaluation method for CSEM in the frequency domain based on wavelet transform and analytic envelope
YANG Yang1,2, HE JiShan1,2, LI DiQuan1,2
1. Institute of Applied Geophysics, School of Geosciences and Info-Physics, Central South University, Changsha 410083, China; 2. Key Laboratory of Metallogenic Prediction of Non-Ferrous Metals and Geological Environment Monitor, Ministry of Education, Central South University, Changsha 410083, China
Abstract:In the conventional CSEM exploration method, only main frequencies of signal are used, or some lower-order harmonics information is extracted based on experiences. But such a procedure has no criteria to valid information extracted. In this paper we present an effective method for evaluating noise influence in the frequency domain, which makes it possible to extract frequency coefficients with high SNR, including both the main frequency and its harmonics. The spectrum of raw data is obtained from time domain data by using the mix-radix fast Fourier transform. Then it puts the amplitude of CSEM frequency into the average of adjacent two frequencies to output a modified spectrum. This pre-processed spectrum is divided into low frequency part (trend) and high frequency part (oscillation) by using discrete wavelet transform. The analytic envelope of the high frequency part is obtained based on Hilbert transform. The upper bound curve of the total spectrum is reconstructed with the low frequency part and the envelope of high frequency part. The maximum influence amplitudes (MIA) of noise at CSEM frequencies are estimated. Noise evaluation number is calculated based on MIA and raw amplitude in CSEM frequency. By this noise rating number, it will be possible to screen out frequency coefficients with high SNR from raw spectrum. By applying this method, amount of frequency coefficients, including many high-order harmonics, are extracted without increasing any field work. Vertical resolution of CSEM is also improved by this method since more frequency coefficients are extracted.
Boashash B. 1992. Estimating and Interpreting the Instantaneous Frequency of a Signal I:Fundamentals. Proceedings of the IEEE, 80(4):519-538. Boyd S, Vandenberghe L. 2004. Convex Optimization. Cambridge:Cambridge University Press. Bracewell R. 2000. The Fourier Transform and Its Applications. 3rd ed. New York:McGraw-Hill. Daubechies I. 1992. Ten lectures on wavelets.//CBMS-NSF Conference Series in Applied Mathematics. Philadelphia:SIAM. Feldman M. 2011. Hilbert transform in vibration analysis. Mechanical Systems and Signal Processing, 25(3):735-802. He J S. 2007. The new development of frequency domain electro-prospecting. Progress in Geophysics (in Chinese), 22(4):1250-1254. He J S. 2010a. Closed addition in a three-element set and 2n sequence pseudo-random signal coding. Journal of Central South University (Science and Technology) (in Chinese), 41(2):613-637. He J S. 2010b. Wide Field Electromagnetic Method and Pseudo Random Signal Electrical Prospecting. Beijing:Higher Education Press. Li J M. 2005. Geoelectric Field and Electrical Exploration (in Chinese). Beijing:Geological Publishing House. Li J, Tang J T, Xu Z M. 2017. Magnetotelluric noise suppression base on signal-to-noise indentification in ore concentration area. Chinese Journal of Geophysics (in Chinese), 60(2):722-737, doi:10.6038/cjg20170224. Mallat S G. 1989. A theory for multiresolution signal decomposition:the wavelet representation. IEEE Transactions on Pattern Analysis and Machine Intellignece, 11(7):674-693. Marple S L. 1999. Computing the discrete-time analytic signal via FFT. IEEE Transactions on Signal Processing, 47(9):2600-2603. Meyer Y. 1995. Wavelets and Operators. Cambridge:Cambridge University Press. Picinbono B. 1997. On instantaneous amplitude and phase of signals. IEEE Transactions on Signal Processing, 45(3):552-560. Shensa M J. 1992. The discrete wavelet transform:wedding the a trous and Mallat algorithms. IEEE Transactions on Signal Processing, 40(10):2464-2482. Singleton R C. 1969. An algorithm for computing the mixed radix fast Fourier transform. IEEE Transactions on Audio and Electroacoustics, 17(2):93-103. Tang J T, He J S. 2005. Controllable Source Audio Magnetotelluric Method and Its Application (in Chinese). Changsha:Central South University Press. Tang J T, Li J, Xiao X, et al. 2012a. Mathematical morphology filtering and noise suppression of magnetotelluric sounding data. Chinese Journal of Geophysics (in Chinese), 55(5):1784-1793, doi:10.6038/j.issn.0001-5733.2012.05.036. Tang J T, Liu Z J, Liu F Y, et al. 2015a. The denoising of the audio magnetotelluric data set with strong interferences. Chinese Journal of Geophysics (in Chinese), 58(12):4636-4647, doi:10.6038/cjg20151225. Tang J T, Ren Z Y, Zhou C, et al. 2015b. Frequency-domain electromagnetic methods for exploration of the shallow subsurface:A review. Chinese Journal of Geophysics (in Chinese), 58(8):2682-2705, doi:10.6038/cjg20150807. Tang J T, Xu Z M, Xiao X, et al. 2012b. Effect rules of strong noise on Magnetotelluric (MT) sounding in the Luzong ore cluster area. Chinese Journal of Geophysics (in Chinese), 55(12):4147-4159, doi:10.6038/j.issn.0001-5733.2012.12.027. Vakman D E. 1972. On the definition of concepts of amplitude, phase and instantaneous frequency of a signal. Radio Eng. Electron. Phys., 17(5):754-759. Welch P D. 1967. The use of fast Fourier transform for the estimation of power spectra:a method based on time averaging over short, modified periodograms. IEEE Transactions on Audio and Electroacoustics, 15(2):70-73. Xi Z Z, Bao G S. 1996. A tentative discussion on hacsamy method. Geophysical and Geochemical Exploration (in Chinese), 20(5):397-400. Zonge K L, Hughes L J. 1981. The Complex Resistivity Method, in Advances In Induced Polarization and Complex Resistivity. Tucson:University of Arizona Press. 何继善. 2007. 频率域电法的新进展. 地球物理学进展, 22(4):1250-1254. 何继善. 2010a. 三元素集合中的自封闭加法与 2n序列伪随机信号编码. 中南大学学报(自然科学版), 41(2):613-637. 何继善. 2010b. 广域电磁法和伪随机信号电法. 北京:高等教育出版社. 李晋, 汤井田, 徐志敏等. 2017. 基于信噪辨识的矿集区大地电磁噪声压制. 地球物理学报, 60(2):722-737,doi:10.6038/cjg20170224. 李金铭. 2005. 地电场与电法勘探. 北京:地质出版社. 汤井田, 何继善. 2005. 可控源音频大地电磁法及其应用. 长沙:中南大学出版社. 汤井田, 李晋, 肖晓等. 2012a. 数学形态滤波与大地电磁噪声压制. 地球物理学报, 55(5):1784-1793, doi 10.6038/j.issn.0001-5733.2012.05.036. 汤井田, 徐志敏, 肖晓等. 2012b. 庐枞矿集区大地电磁测深强噪声的影响规律. 地球物理学报, 55(12):4147-4159, doi:10.6038/j.issn.0001-5733.2012.12.027. 汤井田, 刘子杰, 刘峰屹等. 2015a. 音频大地电磁法强干扰压制试验研究. 地球物理学报, 58(12):4636-4647, doi:10.6038/cjg20151225. 汤井田, 任政勇, 周聪等. 2015b. 浅部频率域电磁勘探方法综述. 地球物理学报, 58(8):2682-2705, doi:10.6038/cjg20150807. 席振铢, 鲍光淑. 1996. 试论HACSAMT法. 物探与化探, 20(5):397-400.