SHAN JiKun,
LIANG XiaoYun,
WU TongWen et al
.2018.Simulation of the Asian-Pacific Oscillation using the BCC_CSM1.1(m) model.Chinese Journal Of Geophysics,61(1): 106-118,doi: 10.6038/cjg2018K0553
Simulation of the Asian-Pacific Oscillation using the BCC_CSM1.1(m) model
SHAN JiKun1, LIANG XiaoYun2, WU TongWen2, LIU XiangWen2, LI QiaoPing2
1. College of Atmospheric Science, Nanjing University of Information Science and Technology, Nanjing 210044, China; 2. National Climate Center, China Meteorological Administration, Beijing 100081, China
Abstract:The Asian-Pacific Oscillation (APO) is a zonal teleconnection pattern of the eddy temperature field in the middle and high troposphere over the extra-tropical Asian-Pacific region. Its anomalous change is closely related to the Asian and Pacific summer monsoon. Based on the monthly European Center for Medium-Range Weather Forecast reanalysis data ERA-40 and numerical simulation of the BCC_CSM1.1(m) model in Beijing Climate Center,this paper evaluates the ability of BCC_CSM1.1(m) model in simulating the summer APO spatial distribution, evolution of APO index and the climate differences between the higher and lower APO index years. Results show that BCC_CSM1.1(m) can well simulate the out-of-phase relationship in the upper-tropospheric eddy temperature between Asia and North Pacific mid-latitudes in Northern Hemisphere summer, and the model is also able to successfully simulate the interannual variability of APO index, but fails to catch the significantly decreasing trend in 1960s-1970s.Furthermore, BCC_CSM1.1(m) can successfully reproduce the Asian and Pacific summer monsoon climate changes corresponding to the APO index variation. With higher APO index conditions, the summer South Asian high and the North Pacific trough are stronger,while the westerly jet stream over Asia and the easterly jet stream over South Asia both strengthen in the upper troposphere. Meanwhile, the Asian low and the North Pacific subtropical high are stronger in the lower troposphere. The anomalous southerlies prevail at 40°E-50°E longitudes and the mid-latitudes of East Asia, and the anomalous westerlies prevail over South Asia. Summer rainfall increases in South Asia and northern of East Asia, while it decreases from the Yangtze River Basin to Japan and the Philippines region, and vice versa.
Chen J M, Zhao P, Yang S, et al. 2013. Simulation and dynamical prediction of the summer Asian-Pacific oscillation and associated climate anomalies by the NCEP CFSv2. Journal of Climate, 26(11):3644-3656. Chen X L, Zhou T J, Zou L W. 2013. Variation characteristics of the Asian-Pacific Oscillation in boreal summer as simulated by the LASG/IAP climate system model FGOALS_gl. Acta Meteorologica Sinica (in Chinese), 71(1):23-37. Ding Q H, Wang B. 2005. Circumglobal teleconnection in the Northern Hemisphere summer. Journal of Climate, 18(17):3484-3505. Huang R H, Li W J. 1988. Influence of heat source anomaly over the western tropical Pacific on the subtropical high over East Asia and its physical mechanism. Chinese Journal of Atmospheric Sciences (in Chinese), 12(S1):107-116. Huang R H. 1990. Studies on the teleconnections of the general circulation anomalies of East Asia causing the summer drought and flood in China and their physical mechanism. Chinese Journal of Atmospheric Sciences (in Chinese), 14(1):108-117. Huang R H, Sun F Y. 1992. Interannual variation of the summer teleconnection pattern over the northern hemisphere and its numerical simulation. Chinese Journal of Atmospheric Sciences (in Chinese), 16(1):52-61. Huang Y Y, Wang H J, Zhao P. 2013. Is the interannual variability of the summer Asian-Pacific Oscillation predictable? Journal of Climate, 26(11):3865-3876. Huang Y Y, Wang H J, Fan K. 2014. Improving the prediction of the summer Asian-Pacific Oscillation using the interannual increment approach. Journal of Climate, 27(21):8126-8134. Ji J J, Huang M, Li K R. 2008. Prediction of carbon exchange between China terrestrial ecosystem and atmosphere in 21st century. Science in China Series D:Earth Sciences, 51(6):885-898. Jiang D B, Tian Z P, Lang X M. 2016. Reliability of climate models for China through the IPCC Third to Fifth Assessment Reports. International Journal of Climatology, 36(3):1114-1133. Jiang Y M, Huang A N, Wu H M. 2015. Evaluation of the performance of Beijing Climate Center Climate System Model with different horizontal resolution in simulating the annual surface temperature over Central Asia. Chinese Journal of Atmospheric Sciences (in Chinese), 39(3):535-547. Lau K M. 1992. East Asian summer monsoon rainfall variability and climate teleconnection. Journal of the Meteorological Society of Japan, 70(1B):211-241. Lau K M, Weng H Y. 2002. Recurrent teleconnection patterns linking summertime precipitation variability over East Asia and North America. Journal of the Meteorological Society of Japan, 80(6):1309-1324. Lau K M, Lee J Y, Kim K M, et al. 2004. The North Pacific as a regulator of summertime climate over Eurasia and North America. Journal of Climate, 17(4):819-833. Liu G, Zhao P, Chen J M. 2011. A 150-year reconstructed summer Asian-Pacific Oscillation index and its association with precipitation over eastern China. Theoretical and Applied Climatology, 103(1-2):239-248. Liu G, Zhao P, Chen J M, et al. 2015. Preceding factors of summer Asian-Pacific Oscillation and the physical mechanism for their potential influences. Journal of Climate, 28(7):2531-2543. Liu X W, Wu T W, Yang S, et al. 2014. Relationships between interannual and intraseasonal variations of the Asian-western Pacific summer monsoon hindcasted by BCC_CSM1.1(m). Advances in Atmospheric Sciences, 31(5):1051-1064. Liu X W, Wu T W, Yang S, et al. 2015. Performance of the seasonal forecasting of the Asian Summer Monsoon by BCC_CSM1.1(m). Advances in Atmospheric Sciences, 32(8):1156-1172. Nitta T. 1987. Convective activities in the tropical western Pacific and their impacts on the Northern Hemisphere summer circulation. Journal of the Meteorological Society of Japan, 65(3):373-390. Nitta T. 1989. Global features of the Pacific-Japan Oscillation. Meteorology and Atmospheric Physics, 41(1):5-12. Rodwell M J, Hoskins B J. 2001. Subtropical anticyclones and summer monsoons. Journal of Climate, 14(15):3192-3211. Uppala S M, Kållberg P W, Simmons A J, et al. 2005. The ERA-40 re-analysis. Quarterly Journal of the Royal Meteorological Society, 131(621):2961-3012. Wang B, Lee J Y, Kang I S, et al. 2009. Advance and prospectus of seasonal prediction, Assessment of the APCC/CliPAS 14-model ensemble retrospective seasonal prediction (1980-2004). Climate Dynamics, 33(1):93-117. Wang X J, Zheng Z H, Feng G L, et al. 2015. Summer prediction of sea surface temperature in key areas in BCC_CSM model. Chinese Journal of Atmospheric Sciences (in Chinese), 39(2):271-288. Winton M.2000.A reformulated three-layer sea ice model. Journal of Atmospheric and Oceanic Technology, 17(4):525-531. Wu T W, Li W P, Ji J J, et al. 2013. Global carbon budgets simulated by the Beijing Climate Center Climate System Model for the last century. Journal of Geophysical Research Atmospheres, 118(10):4326-4347. Wu T W, Song L C, Li W P, et al. 2014. An overview on progress in Beijing Climate Center Climate System Model-Its development and application to climate change studies. Acta Meteorologica Sinica (in Chinese), 72(1):12-29. Xin X G, Wu T W, Zhang J.2012. Introduction of CMIP5 experiments carried out by BCC climate system model. Progressus Inquisitiones De Mutatione Climatis (in Chinese), 8(5):378-382. Xin X G, Cheng Y J, Wang F, et al. 2012. Asymmetry of surface climate change under RCP2.6 projections from the CMIP5 models. Advances in Atmospheric Sciences, 30(3):796-805. Xin X G, Wu T W, Li J L, et al. 2013a. How well does BCC_CSM1.1 reproduce the 20th century climate change over China? Atmospheric and Oceanic Science Letters, 6(1):21-26. Xin X G, Wu T W, Zhang J. 2013b. Introduction of CMIP5 experiments carried out with the climate system models of Beijing Climate Center. Advances in Climate Change Research, 4(1):41-49. Yanai M, Li C F, Song Z S. 1992. Seasonal heating of the Tibetan Plateau and its effects on the evolution of the Asian summer monsoon. Journal of the Meteorological Society of Japan, 70(1B):319-351. Yu R C, Wang B, Zhou T J. 2004. Tropospheric cooling and summer monsoon weakening trend over East Asia. Geophysical Research Letters, 31(22):L22212,217-244. Zhang F, Dong M, Wu T W. 2014. Evaluation of the ENSO features simulations as done by the CMIP5 models. Acta Meteorologica Sinica (in Chinese), 72(1):30-48. Zhang L, Wu T W, Xin X G, et al. 2013. The annual modes of tropical precipitation simulated by the Beijing Climate Center Climate System Model (BCC_CSM). Chinese Journal of Atmospheric Sciences (in Chinese), 37(5):994-1012. Zhao P, Zhu Y N, Zhang R H. 2007. An Asian-Pacific teleconnection in summer tropospheric temperature and associated Asian climate variability. Climate Dynamics, 29(2-3):293-303. Zhao P, Chen J M, Xiao D, et al. 2008. Summer Asian-Pacific oscillation and its relationship with atmospheric circulation and monsoon rainfall. Acta Meteorologica Sinica (in Chinese), 66(5):716-729. Zhao P, Cao Z H, Chen J M. 2010. A summer teleconnection pattern over the extratropical Northern Hemisphere and associated mechanisms. Climate Dynamics, 35(2):523-534. Zhao P, Yang S, Wang H J, et al. 2011a. Interdecadal relationships between the Asian-Pacific Oscillation and summer climate anomalies over Asian, North Pacific and North America during recent 100 years. Journal of Climate, 24(18):4793-4799. Zhao P, Yang S, Jian M Q, et al. 2011b. Relative controls of Asian-Pacific summer climate by Asian land and tropical-North Pacific sea surface temperature. Journal of Climate, 24(15):4165-4188. Zhao P, Wang B, Zhou X J. 2012. Boreal summer continental monsoon rainfall and hydroclimate anomalies associated with the Asian-Pacific Oscillation. Climate Dynamics, 39(5):1197-1207. Zhou B T, Cui X, Zhao P. 2008. Relationship between the Asian-Pacific Oscillation and the tropical cyclone frequency in the Western North Pacific. Science in China Series D:Earth Sciences, 51(3):380-385. Zhou B T, Zhao P. 2010. Influence of the Asian-Pacific Oscillation on spring precipitation over central eastern China. Advances in Atmospheric Sciences, 27(3):575-582. Zhou T J, Zhang J. 2009. Harmonious inter-decadal changes of July-August upper tropospheric temperature across the North Atlantic, Eurasian continent and North Pacific. Advances in Atmospheric Sciences, 26(4):656-665. Zou Y, Zhao P. 2009. Relation of summer Asian-Pacific oscillation to tropical cyclone activities over the coastal waters of China. Acta Meteorologica Sinica (in Chinese), 67(5):708-715. 陈晓龙, 周天军, 邹立维. 2013. 夏季亚洲-太平洋涛动的耦合模式模拟. 气象学报, 71(1):23-37. 黄荣辉, 李维京. 1988. 夏季热带西太平洋上空的热源异常对东亚上空副热带高压的影响及其物理机制. 大气科学, 12(S1):107-116. 黄荣辉. 1990. 引起我国夏季旱涝的东亚大气环流异常遥相关及其物理机制的研究. 大气科学, 14(1):108-117. 黄荣辉, 孙凤英. 1992. 北半球夏季遥相关型的年际变化及其数值模拟. 大气科学, 16(1):52-61. 姜燕敏, 黄安宁, 吴昊旻. 2015. 不同水平分辨率BCC_CSM模式对中亚地面气温模拟能力评估. 大气科学, 39(3):535-547. 汪栩加, 郑志海, 封国林等. 2015. BCC_CSM模式夏季关键区海温回报评估. 大气科学, 39(2):271-288. 吴统文, 宋连春, 李伟平等. 2014. 北京气候中心气候系统模式研发进展——在气候变化研究中的应用. 气象学报, 72(1):12-29. 辛晓歌, 吴统文, 张洁. 2012. BCC气候系统模式开展的CMIP5试验介绍. 气候变化研究进展, 8(5):378-382. 张芳, 董敏, 吴统文. 2014. CMIP5模式对ENSO现象的模拟能力评估. 气象学报, 72(1):30-48. 张莉, 吴统文, 辛晓歌等. 2013. BCC_CSM模式对热带降水年循环模态的模拟. 大气科学, 37(5):994-1012. 赵平, 陈军明, 肖栋等. 2008. 夏季亚洲-太平洋涛动与大气环流和季风降水. 气象学报, 66(5):716-729. 周波涛, 崔绚, 赵平. 2008. 亚洲-太平洋涛动与西北太平洋热带气旋频数的关系. 中国科学D 辑:地球科学, 38(1):118-123. 邹燕, 赵平. 2009. 夏季亚洲-太平洋涛动与中国近海热带气旋活动的关系. 气象学报, 67(5):708-715.