MA Ni,
YIN Xing-Yao,
SUN Cheng-Yu et al
.2017.The in-situ stress seismic prediction method based on the theory of orthorhombic anisotropic media.Chinese Journal Of Geophysics,60(12): 4766-4775,doi: 10.6038/cjg20171218
The in-situ stress seismic prediction method based on the theory of orthorhombic anisotropic media
MA Ni1,2, YIN Xing-Yao1,2, SUN Cheng-Yu1,2, ZONG Zhao-Yun1,2
1. School of Geosciences, China University of Petroleum, Qingdao 266580, China; 2. Laboratory for Marine Mineral Resources, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
Abstract:Stress is one of the important parameters to evaluate whether the shale gas can be fractured to network or not. DHSR (Differential Horizontal Stress Ratio) is usually utilized for the stress evaluation with seismic data. Currently DHSR is explicated mainly assuming on transverse isotropic media with a horizontal axis of symmetry (HTI media). However, the actual shale formation owns strong vertical anisotropy. Therefore, based on the theory of orthorhombic anisotropic media, we re-derived the Orthorhombic Differential Horizontal Stress Ratio (Named as ODHSR) in terms of elastic parameters and anisotropic parameters. Firstly, based on the analysis of stress-strain constitutive equation, we derived the constitutive equation of the orthorhombic anisotropic (OA) media and obtained the relationship between the stress and strain of the orthorhombic anisotropic media by the general form of Hooke's law. Then, with this relationship, we derived the relational expression of the maximum horizontal stress, minimum horizontal stress and Orthorhombic Differential Horizontal Stress Ratio in terms of elastic parameters and anisotropic parameters. Finally, the novel ODHSR is verified by comparing the curve of ODHSR to DHSR.
Anderson R A, Ingram D S, Zanier A M. 1973. Determining fracture pressure gradients from well logs. Journal of Petroleum Technology, 25(11):1259-1268. Biot M A, Willis D G. 1957. The elastic coefficients of the theory of consolidation. Journal of Applied Mechanics, 24:594-601. Bourgoyne A T Jr, Millheim K K, Chenevert M E, et al. 1986. Applied Drilling Engineering. Richardson, Texas:Society of Petroleum Engineers. Chen H Z, Yin X Y, Gao C G, et al. 2014. AVAZ inversion for fluid factor based on fracture anisotropic rock physics theory. Chinese J. Geophys. (in Chinese), 57(3):968-978, doi:10.6038/cjg20140326. Cleary M P. 1993. Mechanics, Modeling, and Implementation of Hydraulic Fracturing Using the GRI FRACPRO System. Short Course Notes. Houston, Texas. Cornet F H, Valette B. 1984. In situ stress determination from hydraulic injection test data. Journal of Geophysical Research:Solid Earth, 89(B13):11527-11537. Cornet F H. 1986. Stress determination from hydraulic tests on preexisting fractures-the H. T. P. F. method.//ISRM International Symposium. Stockholm, Sweden:ISRM, 301-312. Deng J G, Chen Z R, Geng Y N, et al. 2013. Prediction model for in-situ formation stress in shale reservoirs. Journal of China University of Petroleum (in Chinese), 37(6):59-64. Ge H K, Lin Y S, Wang S C. 1998. In situ stresses determination technique and its applications in petroleum exploration and development. Journal of the University of Petroleum (in Chinese), 22(1):94-99. Gray F D, Schmidt D P, Delbecq F. 2010a. Optimize shale gas field development using stresses and rock strength derived from 3D seismic data.//Canadian Unconventional Resources and International Petroleum Conference. Calgary, Alberta, Canada:Society of Petroleum Engineers. Gray F D, Anderson P F, Logel J, et al. 2010b. Estimating in-situ, anisotropic, principal stresses from 3D seismic.//72nd EAGE Conference and Exhibition. SPE, EAGE. Gray D, Anderson P, Logel J, et al. 2010c. Principle stress estimation in shale plays using 3D seismic.//GeoCanada 2010-Working with the Earth. Gray F D. 2011. Methods and systems for estimating stress using seismic data. United States Patent Application, 20110182144A1. Gray D, Anderson P, Logel J, et al. 2012. Estimation of stress and geomechanical properties using 3D seismic data. First Break, 30(3):59-68. Huang R Z, Chen M X, Deng J G, et al. 1995. Study on shale stability of wellbore by mechanics coupling with chemistry method. Driuing Fluid and Completion Fluld (in Chinese), 12(3):15-21. Iverson W P. 1995. Closure stress calculations in anisotropic formations.//Low Permeability Reservoirs Symposium. Denver, Colorado:Society of Petroleum Engineers. Lei T, Sinha B K, Sanders M. 2012. Estimation of horizontal stress magnitudes and stress coefficients of velocities using borehole sonic data. Geophysics, 77(3):WA181-WA196. Li Z M, Zhang J Z. 1997. In-situ Stress and Petroleum Exploration & Development (in Chinese). Beijing:Petroleum Industry Press. Mathar J. 1934. Determination of initial stresses by measuring the deformation around drilled holes. Trans. ASME, 56(4):249-259. Matsuki K, Takeuchi K. 1993. Three-dimensional in situ stress determination by anelastic strain recovery of a rock core. International Journal of Rock Mechanics & Mining Sciences & Geomechanics Abstracts, 30(7):1019-1022. Rüger A. 1996. Reflection coefficients and azimuthal AVO analysis in anisotropic media[Ph. D. thesis]. Colorado:Colorado School of Mines. Sayers C M. 2002. Stress-dependent elastic anisotropy of sandstones. Geophysical Prospecting, 50(1):85-95. Sayers C M, Nagy Z, Adachi J, et al. 2009. Determination of in-situ stress and rock strength using borehole acoustic data.//SEG Technical Program Expanded Abstracts. SEG, 3505-3509. Schoenberg M, Sayers C M. 1995. Seismic anisotropy of fractured rock. Geophysics, 60(1):204-211. Sena A, Castillo G, Chesser K, et al. 2011. Seismic reservoir characterization in resource shale plays:Stress analysis and sweet spot discrimination. The Leading Edge, 30(7):758-764. Sinha B, Bratton T, Higgins S. 2009. Estimation of formation horizontal stress magnitudes using radial profiles of shear slownesses.//SEG Technical Program Expanded Abstracts. SEG, 466-471. Starr J. 2011. Closure stress gradient estimation of the Marcellus shale from seismic data.//SEG Technical Program Expanded Abstracts. SEG, 1789-1793. Stephasson O. 1983a. Rock stress measurement by sleeve fracturing.//Proc. 5th ISRM Congress. Melbourne, Australia:International Society for Rock Mechanics. Stephasson O. 1983b. Sleeve fracturing for rock stress measurement in boreholes.//International symposium soil and rock investigations by in-situ testing. 2:571-578. Sun D S. 2014. Experimental study of anelastic strain recovery in-situ stress measurement methods and its application[Ph. D] (in Chinese). Beijing:Chinese Academy of Geological Sciences. Thomsen L. 1986. Weak elastic anisotropy. Geophysics, 51(10):1954-1966. Tsvankin I. 1997. Anisotropic parameters and P-wave velocity for orthorhombic media. Geophysics, 62(4):1292-1309. Warpinski N R, Teufel L W. 1989. In-situ stresses in low-permeability, nonmarine rocks. Journal of Petroleum Technology, 41(4):405-414. Yin X Y, Cao D P, Wang B L, et al. 2014a. Research progress of fluid discrimination with prestack seismic inversion. OGP (in Chinese), 49(1):22-34, 46. Yin X Y, Cui W, Zong Z Y, et al. 2014b. Petrophysical property inversion of reservoirs based on elastic impedance. Chinese J. Geophys. (in Chinese), 57(12):4132-4140, doi:10.6038/cjg20141224. Yin X Y, Zong Z Y, Wu G C. 2015. Research on seismic fluid identification driven by rock physics. Science China:Earth Sciences, 58(2):159-171. Yin X Y, Liu X X. 2016. Research status and progress of the seismic rock-physics modeling methods. Geophysical Prospecting for Petroleum (in Chinese), 55(3):309-325. Zhang F, Li X Y. 2015. Exact elastic impedance tensor for isotropic media. Science China-Earth Sciences, 58(8):1350-1360. Zhang F, Li X Y. 2016. Exact elastic impedance matrices for transversely isotropic medium. Geophysics, 81(2):C1-C15. Zhang G Z, Chen J J, Chen H Z, et al. 2015. Prediction for in-situ formation stress of shale based on rock physics equivalent model. Chinese J. Geophys. (in Chinese), 58(6):2112-2122, doi:10.6038/cjg20150625. Zoback M D. 2007. Reservoir geomechanics. New York:Cambridge University Press. Zong Z Y, Yin X Y, Wu G C. 2012. AVO inversion and poroelasticity with P-and S-wave moduli. Geophysics, 77(6):N17-N24. Zong Z Y, Yin X Y, Zhang F, et al. 2012. Reflection coefficient equation and pre-stack seismic inversion with Young's modulus and Poisson ratio. Chinese J. Geophys. (in Chinese), 55(11):3786-3794, doi:10.6038/j.issn.0001-5733.2012.11.025. Zong Z Y, Yin X Y, Wu G C. 2013. AVAZ inversion and stress evaluation in heterogeneous medium.//2013 SEG Annual Meeting. Houston, Texas:SEG, 428-432. 陈怀震, 印兴耀, 高成国等. 2014. 基于各向异性岩石物理的缝隙流体因子AVAZ反演. 地球物理学报, 57(3):968-978, doi:10.6038/cjg20140326. 邓金根, 陈峥嵘, 耿亚楠等. 2013. 页岩储层地应力预测模型的建立和求解. 中国石油大学学报(自然科学版), 37(6):59-64. 葛洪魁, 林英松, 王顺昌. 1998. 地应力测试及其在勘探开发中的应用. 石油大学学报(自然科学版), 22(1):94-99. 黄荣樽, 陈勉, 邓金根等. 1995. 泥页岩井壁稳定力学与化学的耦合研究. 钻井液与完井液, 12(3):15-21. 李志明, 张金珠. 1997. 地应力与油气勘探开发. 北京:石油工业出版社. 孙东生. 2014. 非弹性应变恢复原地应力测量方法的实验研究及应用[博士论文]. 北京:中国地质科学院. 印兴耀, 曹丹平, 王保丽等. 2014a. 基于叠前地震反演的流体识别方法研究进展. 石油地球物理勘探, 49(1):22-34, 46. 印兴耀, 崔维, 宗兆云等. 2014b. 基于弹性阻抗的储层物性参数预测方法. 地球物理学报, 57(12):4132-4140, doi:10.6038/cjg20141224. 印兴耀, 宗兆云, 吴国忱. 2015. 岩石物理驱动下地震流体识别研究. 中国科学:地球科学, 45(1):8-21. 印兴耀, 刘欣欣. 2016. 储层地震岩石物理建模研究现状与进展. 石油物探, 55(3):309-325. 张广智, 陈娇娇, 陈怀震等. 2015. 基于页岩岩石物理等效模型的地应力预测方法研究. 地球物理学报, 58(6):2112-2122, doi:10.6038/cjg20150625. 宗兆云, 印兴耀, 张峰等. 2012. 杨氏模量和泊松比反射系数近似方程及叠前地震反演. 地球物理学报, 55(11):3786-3794, doi:10.6038/j.issn.0001-5733.2012.11.025.